A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Cr(VI) behaves differently than Cr(III) in the uptake, translocation and detoxification in rice roots. | LitMetric

Cr(VI) behaves differently than Cr(III) in the uptake, translocation and detoxification in rice roots.

Sci Total Environ

MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, China; Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China. Electronic address:

Published: October 2024

AI Article Synopsis

  • Excessive chromium accumulation, especially hexavalent chromium (Cr(VI)), negatively affects root growth in rice plants, with trivalent chromium (Cr(III)) showing more significant inhibition at low levels, due to different physiological effects.* -
  • Both Cr(III) and Cr(VI) are taken up by rice roots, but they have different patterns of uptake and translocation, with Cr(III) leading to higher root-to-shoot translocation compared to Cr(VI).* -
  • Gene profiling showed that various detoxification genes, particularly ATP-binding cassette transporters and glutathione S-transferases, are more active under Cr(VI) stress, highlighting their roles in managing chromium toxicity in rice.*

Article Abstract

Excessive accumulation of chromium (Cr) causes severe damage to both physiological and biochemical processes and consequently growth repression in plants. Hexavalent chromium [Cr(VI)]-elicited alterations in plants have been widely elucidated at either physiological or molecular level, whereas little is known about trivalent chromium [Cr(III)]. Here, we found that both Cr(III) and Cr(VI) significantly inhibited root growth in rice plants. However, rice plants under Cr(VI) showed significantly less inhibition in root growth than those under Cr(III) at low levels, which might be attributed to the different hormetic effects of Cr(III) and Cr(VI) on rice plants. It was unexpected that Cr(III) could be actively taken up by rice roots similarly to Cr(VI); whereas they exhibited different kinetic uptake patterns. Furthermore, root-to-shoot Cr translocation under Cr(VI) was much lower than that under Cr(III). These results indicate that the uptake, translocation, and toxicity of Cr(III) differed greatly from those of Cr(VI). Transcriptome profiling of rice roots revealed that a series of gene families involved in detoxification, including ATP-binding cassette (ABC) transporters, multidrug and toxic compound extrusion proteins (MATEs), and Tau class glutathione S-transferases (GSTUs), were significantly associated with Cr accumulation and detoxification in rice roots. In addition, much more members of these gene families were upregulated by Cr(VI) compared to Cr(III), suggesting their vital roles in Cr uptake, translocation, and detoxification, especially under Cr(VI) stress. Further comparison of gstu9 and gstu10/50 mutants with their wild type confirmed that GSTUs play complex roles in the intracellular Cr transport and redox homeostasis during Cr(III) or Cr(VI) stress. Taken together, our findings provides new insights into the differential behaviors of Cr(III) and Cr(VI) in rice roots, as well as new candidate genes such as OsABCs and OsGSTUs, to further elucidate the mechanisms of the uptake, translocation, and detoxification of Cr(III) and Cr(VI).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.174736DOI Listing

Publication Analysis

Top Keywords

rice roots
20
criii crvi
20
uptake translocation
16
crvi
12
translocation detoxification
12
rice plants
12
criii
11
rice
8
detoxification rice
8
root growth
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!