While drought impacts are widespread across the globe, climate change projections indicate more frequent and severe droughts. This underscores the pressing need to increase resistance and resilience to drought. The strategic application of Preventive Drought Management Measures (PDMMs) is a suitable avenue to reduce the likelihood of drought and ameliorate associated damages. In this study, we use an optimisation approach with a multicriteria decision-making method to allocate PDMMs for reducing the severity of agricultural and hydrological droughts. The results indicate that implementing PDMMs can reduce the severity of agricultural and hydrological droughts, and the obtained management scenarios (solutions) highlight the utility of multi-objective optimisation for PDMMs planning. However, examined management scenarios also illustrate the trade-off between managing agricultural and hydrological droughts. PDMMs can alleviate the severity of agricultural droughts while producing opposite effects for hydrological droughts (or vice versa). Furthermore, the impact of PDMMs displays temporal and spatial variabilities. For instance, PDMMs implementation within a specific subbasin may mitigate the severity of one type of drought in a given month yet exacerbate drought conditions in preceding or subsequent months. In the case of hydrological droughts, the PDMMs may intensify streamflow deficits in the intervened subbasins while alleviating the hydrological drought severity downstream (or vice versa). These complexities emphasise a customised implementation of PDMMs, considering the basin characteristics (e.g., rainfall distribution over the year, soil properties, land use, and topography) and the quantification of PDMMs' effect on the severity of each type of drought.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.174842 | DOI Listing |
J Environ Manage
December 2024
University of South Bohemia in České Budějovice, Faculty of Agriculture and Technology, Department of Applied Ecology, Studentská 1668, 370 05, České Budějovice, Czech Republic. Electronic address:
Land cover, vegetation, and landscape management have a large impact on surface water conditions. We analyzed the quantity and quality of surface waters draining from forest catchment with high vegetation and agricultural catchment with low or no vegetation. The following parameters were assessed: specific water runoff, precipitation totals, electrical conductivity in the surface waters, the content of suspended solids, nitrate nitrogen (N-NO), and phosphate phosphorus (P-PO) in the surface waters.
View Article and Find Full Text PDFJ Environ Manage
December 2024
Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang Observation and Research Station of Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, Guangxi, China. Electronic address:
In karst landscapes, where sustainable water management is increasingly challenged by drought-induced water scarcity, the adoption of road-based rainwater harvesting (RBWH) systems has emerged as a promising solution for improving water accessibility. Despite the growing implementation of such systems, the effectiveness of many RBWH projects in karst terrains remains suboptimal due to an inadequate understanding of runoff generation mechanisms associated with hilly road networks. This study focuses on quantifying the contributions of intercepted surface runoff (SR) and soil-epikarst lateral flow (SEF) from a newly exposed road-cut slope in a dolomite hillslope, with data collected across 156 rainfall events from May 2019 to May 2022.
View Article and Find Full Text PDFSci Total Environ
December 2024
National Research Council of Italy, Institute for BioEconomy, Rome, Italy.
Drought is a complex phenomenon with multifactorial impacts, requiring a multiscale approach for effective understanding and management. This study presents an innovative operational framework, "Drought Scan," designed to deepen drought understanding, improve monitoring, and streamline climate services to support effective adaptation and mitigation against drought impacts. At the core of the framework is a methodology that integrates two standardized indices: the standardized precipitation and streamflow indices (SPI and SQI, respectively).
View Article and Find Full Text PDFFEMS Microbiol Ecol
December 2024
River Ecosystems Laboratory, Alpine and Polar Environmental Research Centre, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
Climate change is predicted to alter the hydrological and thermal regimes of high-mountain streams, particularly glacier-fed streams. However, relatively little is known about how these environmental changes impact the microbial communities in glacier-fed streams. Here, we operated streamside flume mesocosms in the Swiss Alps, where benthic biofilms were grown under treatments simulating climate change.
View Article and Find Full Text PDFSci Total Environ
December 2024
School of Natural Sciences, Macquarie University, NSW, Australia.
Waterborne contaminants pose a significant risk to water quality and plant health in agricultural systems. This is particularly the case for relatively small-scale but intensive agricultural operations such as plant production nurseries that often rely on recycled irrigation water. The increasing global demand for plants requires improved water quality and more certainty around water availability, which may be difficult to predict and deliver due to variable and changing climate regimes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!