Selenium (Se) fortification is witnessed to simultaneously inhibit absorbing Cadmium (Cd) and Arsenic (As) by rice plants, but the mechanism is unclear. Here, the effects of Se on the root morphology, iron plaque (IP) content, soil Fe content, radial oxygen loss (ROL), and enzyme activities of the rice plants in the soil contaminated by Cd and As were intensively investigated through the hydroponic and soil experiments. Se effectively alleviated the toxic effects of Cd and As on the plants and the dry weight, root length, and root width were increased by 203.18%, 33.41%, and 52.81%, respectively. It also elucidated that ROL was one of the key factors to elevate IP formation by Se and the specific pathways of Se enhancing ROL were identified. ROL of the plants in the experiment group treated by Se was increased 36.76%, and correspondingly IP was magnified 50.37%, compared to the groups with Cd and As. It was owing to Se significantly increased the root porosity (62.11%), facilitating O transport to the roots. Additionally, Se enhanced the activities of catalase (CAT) and superoxide dismutase (SOD) to promote the catalytic degradation of ROS induced by Cd and As stress. It indirectly increased O release in the rhizosphere, which benefit to form more robust IP serve as stronger barrier to Cd and As. The results of our study provide a novel molecular level insight for Se promoting root IP to block Cd and As uptake by the rice plants.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2024.142903DOI Listing

Publication Analysis

Top Keywords

rice plants
12
simultaneously inhibit
8
cadmium arsenic
8
uptake rice
8
iron plaque
8
plants
5
root
5
inhibit cadmium
4
arsenic uptake
4
rice
4

Similar Publications

OsCYP22 Interacts With OsCSN5 to Affect Rice Root Growth and Auxin Signalling.

Plant Cell Environ

January 2025

Ningbo Key Laboratory of Agricultural Germplasm Resources Mining and Environmental Regulation, College of Science and Technology, Ningbo University, Ningbo, China.

Beyond structural support, plant root systems play crucial roles in the absorption of water and nutrients, fertiliser efficiency and crop yield. However, the molecular mechanism regulating root architecture in rice remains largely unknown. In this study, a short-root rice mutant was identified and named Oscyp22.

View Article and Find Full Text PDF

Background: RNA m6A methylation installed by RNA methyltransferases plays a crucial role in regulating plant growth and development and environmental stress responses. However, the underlying molecular mechanisms of m6A methylation involved in seed germination and stress responses are largely unknown. In the present study, we surveyed global m6A methylation in rice seed germination under salt stress and the control (no stress) using an osmta1 mutant and its wild type.

View Article and Find Full Text PDF

Genetic Improvement of rice Grain size Using the CRISPR/Cas9 System.

Rice (N Y)

January 2025

Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Zhongshan Biological Breeding Laboratory, College of Agriculture, Yangzhou University, Yangzhou, 225009, China.

Rice grain size influences both grain yield and quality, making it a significant target for rice genetic improvement. In recent years, numerous genes related to grain size with differential effects have been cloned. The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) gene editing system is a convenient tool for modifying genes.

View Article and Find Full Text PDF

A purple-pigmented (purple) rice seeds containing an anthocyanin, a major class of flavonoids, and their isogenic non-pigmented (white) seeds were exposed outside of the international space station (ISS) to evaluate the impact of anthocyanin on seed viability in space. The rice seeds were placed in sample plates at the exposed facility of ISS for 440 days, with the bottom layer seeds exposed to space radiation and the top layer seeds exposed to both solar light and space radiation. Though the seed weight of both purple and white seeds decreased after exposure to outer space, growth percentages after germination of purple and white seeds in the top layer were 55 and 15 %, respectively, compared to those in the bottom layer 100 and 70 %, respectively.

View Article and Find Full Text PDF

Overexpressing OsNF-YB12 elevated the content of jasmonic acid and impaired drought tolerance in rice.

Plant Sci

January 2025

Shanghai Agrobiological Gene Center, Shanghai, 201106 China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, 201106, China. Electronic address:

Nuclear factor Y (NF-Y) is an evolutionarily conserved heterotrimeric transcription factor in eukaryotes. In a previous study, OsNF-YB12 was confirmed to be associated with drought tolerance using the Ecotilling method. In this study, real-time quantitative RT-PCR revealed that OsNF-YB12 was induced by various abiotic stresses and phytohormones, with expression levels differing between leaves and roots.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!