A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Genetic and structural basis of colistin resistance in Klebsiella pneumoniae: Unravelling the molecular mechanisms. | LitMetric

AI Article Synopsis

  • Antimicrobial resistance, particularly among Gram-negative bacteria, continues to rise, making colistin an essential last-resort antibiotic despite unknown mechanisms of its resistance.
  • A study analyzing 32 carbapenem-resistant Klebsiella pneumoniae isolates found varying levels of resistance to colistin, with distinct genetic mutations and lipid A alterations contributing to this resistance.
  • The research highlights the need for alternative treatment strategies, such as combination therapies, to effectively manage colistin heteroresistance and improve treatment outcomes.

Article Abstract

Objective: Antimicrobial resistance (AMR), together with multidrug resistance (MDR), mainly among Gram-negative bacteria, has been on the rise. Colistin (polymyxin E) remains one of the primary available last resorts to treat infections caused by MDR bacteria during the rapid emergence of global resistance. As the exact mechanism of bacterial resistance to colistin remains undetermined, this study warranted elucidation of the underlying mechanisms of colistin resistance and heteroresistance among carbapenem-resistant Klebsiella pneumoniae isolates.

Methods: Molecular analysis was carried out on the resistant isolates using a genome-wide characterisation approach, as well as MALDI-TOF mass spectrometry, to identify lipid A.

Results: Among the 32 carbapenem-resistant K. pneumoniae isolates, several isolates showed resistance and intermediate resistance to colistin. The seven isolates with intermediate resistance exhibited the "skip-well" phenomenon, attributed to the presence of resistant subpopulations. The three isolates with full resistance to colistin showed ions using MALDI-TOF mass spectrometry at m/z of 1840 and 1824 representing bisphosphorylated and hexa-acylated lipid A, respectively, with or without hydroxylation at position C'-2 of the fatty acyl chain. Studying the genetic environment of mgrB locus revealed the presence of two insertion sequences that disrupted the mgrB locus in the three colistin-resistant isolates: IS1R and IS903B.

Conclusions: Our findings show that colistin resistance/heteroresistance was inducible with mutations in chromosomal regulatory networks controlling the lipid A moiety and insertion sequences disrupting the mgrB gene, leading to elevated minimum inhibitory concentration values and treatment failure. Different treatment strategies should be employed to avoid colistin heteroresistance-linked treatment failures, mainly through combination therapy using colistin with carbapenems, aminoglycosides, or tigecycline.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jgar.2024.06.019DOI Listing

Publication Analysis

Top Keywords

resistance colistin
12
resistance
10
colistin
9
colistin resistance
8
klebsiella pneumoniae
8
maldi-tof mass
8
mass spectrometry
8
intermediate resistance
8
mgrb locus
8
insertion sequences
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!