Liver injury protection of Artemisia stechmanniana besser through PI3K/AKT pathway.

J Ethnopharmacol

Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, PR China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China. Electronic address:

Published: November 2024

Ethnopharmacological Relevance: Artemisia stechmanniana Besser, one of the most prevalent botanical medicines in Chinese, has been traditionally used for hepatitis treatment. However, the bioactive components and pharmacological mechanism on alcohol-induced liver injury remains unclear.

Aim Of The Study: To investigate the effect of A. stechmanniana on alcohol-induced liver damage, and further explore its mechanism.

Materials And Methods: Phytochemical isolation and structural identification were used to determine the chemical constituents of A. stechmanniana. Then, the alcohol-induced liver damage animal and cell model were established to evaluate its hepato-protective potential. Network pharmacology, molecular docking and bioinformatics were integrated to explore the mechanism and then the prediction was further supported by experiments. Moreover, both compounds were subjected to ADMET prediction through relevant databases.

Results: 28 compounds were isolated from the most bioactive fraction, ethyl acetate extract A. stechmanniana, in which five compounds (abietic acid, oplopanone, oplodiol, hydroxydavanone, linoleic acid) could attenuate mice livers damage caused by alcohol intragastration, reduce the degree of oxidative stress, and serum AST and ALT, respectively. Furthermore, abietic acid and hydroxydavanone exhibited best protective effect against alcohol-stimulated L-O2 cells injury among five bioactive compounds. Network pharmacology and bioinformatics analysis suggested that abietic acid and hydroxydavanone exhibiting drug likeliness characteristics, were the principal active compounds acting on liver injury treatment, primarily impacting to cell proliferation, oxidative stress and inflammation-related PI3K-AKT signaling pathways. Both of them displayed strong binding energies with five target proteins (HRAS, HSP90AA1, AKT1, CDK2, NF-κB p65) via molecular docking. Western blotting results further supported the predication with up-regulation of protein expressions of CDK2, and down-regulation of HRAS, HSP90AA1, AKT1, NF-κB p65 by abietic acid and hydroxydavanone.

Conclusion: Alcohol-induced liver injury protection by A. stechmanniana was verified in vivo and in vitro expanded its traditional use, and its two major bioactive compounds, abietic acid and hydroxydavanone exerted hepatoprotective effect through the regulation of PI3K-AKT signaling pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jep.2024.118590DOI Listing

Publication Analysis

Top Keywords

abietic acid
20
liver injury
16
alcohol-induced liver
16
acid hydroxydavanone
12
injury protection
8
artemisia stechmanniana
8
stechmanniana besser
8
stechmanniana alcohol-induced
8
liver damage
8
network pharmacology
8

Similar Publications

Cobalt (II, III) oxide (CoO) has recently gained attention as an alternative anode material to commercial graphite in lithium-ion batteries (LIBs) due to its superior safety and large theoretical capacity of about 890 mAh g. However, its practical application is limited by poor electrical conductivity and rapid capacity degradation because of significant volume increases and structural strain during repeated lithiation/delithiation cycles. To address these issues, this work presents a novel approach to synthesizing carbon-composited CoO microspheres (CoO@C), using abietic acid (AA) as a carbon source to increase conductivity and structural stability.

View Article and Find Full Text PDF

Wound Healing Potential of Herbal Hydrogel Formulations of Extracts in Mice.

Gels

November 2024

Section of Pharmaceutical Technology, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15784 Athens, Greece.

Article Synopsis
  • Wound healing is a major focus in healthcare, especially for vulnerable populations; this study explores the healing effects of resin and bark extracts from a plant native to Cyprus in a mouse model.
  • Researchers used male SKH-hr2 mice with induced wounds to test hydrogel formulations containing varying concentrations of these plant extracts and assessed their efficacy through several methods, including clinical observations and advanced imaging techniques.
  • The findings suggest that the 10% resin formulation was the most effective, with chemical analysis revealing compounds like abietic acid that could explain the positive results, highlighting the need for further study on herbal treatments in wound care.
View Article and Find Full Text PDF

The asymmetric syntheses of naturally occurring biologically relevant -abietane diterpenoids, (-)-taiwaniaquinone G (), and H () have been reported via a chiral pool strategy starting from commercially available abietic acid. A ring contraction of the middle ring of the [6,6,6]-carbotricyclic abietane diterpenoid core was carried out under the Wolff rearrangement. Finally, the synthesis of (-)-taiwaniaquinone H () was completed via a one-pot CAN-mediated oxidative decarboxylation.

View Article and Find Full Text PDF

Lipidic biomass as a renewable chemical building block for polymeric materials.

Chem Commun (Camb)

December 2024

Universidade Estadual Paulista "Júlio de Mesquita Filho" - UNESP, Faculdade de Ciências, Department of Chemistry, 17033-260, Bauru, SP, Brazil.

Article Synopsis
  • * There's an urgent need for new biodegradable polymers made from renewable sources that are cost-effective, non-toxic, and widely available, like lipids found in vegetable oils and essential oils.
  • * This article aims to review these renewable sources and their related polymeric materials, discussing their properties, applications, and the limitations they face compared to traditional non-renewable polymers.
View Article and Find Full Text PDF
Article Synopsis
  • The rise of glucose sensors and insulin pumps has improved diabetes management, but there's been an increase in contact dermatitis cases linked to these devices due to certain allergens.* -
  • Isobornyl acrylate (IBOA) is a major allergen found in some glucose sensors, leading to its removal from specific products, yet it still appears in many others.* -
  • The potential benefits of these diabetes devices can be overshadowed by allergic reactions, prompting dermatologists to work with endocrinologists and manufacturers to find alternative solutions for affected patients.*
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!