The current state of medical and scientific knowledge on the effects of exposure to electromagnetic fields on workers in the field of clinical magnetic resonance imaging (MRI) is summarized here.A systematic literature search was conducted to analyze the health risks to medical personnel from magnetic fields in MRI. A total of 7273 sources were identified, with 7139 being excluded after screening of the title and abstract. After full-text screening, 34 sources remained and were included in this paper.There are a number of scientific publications on the occurrence of short-term sensory effects such as vertigo, metallic taste, phosphenes as well as on the occurrence of neurocognitive and neurobehavioral effects. For example, short-term exposure to clinical magnetic fields has been reported to result in a 4% reduction in speed and precision and a 16% reduction in visual contrast sensitivity at close range. Both eye-hand precision and coordination speed are affected. The long-term studies concern, among other things, the influence of magnetic fields on sleep quality, which could be linked to an increased risk of accidents. The data on the exposure of healthcare workers to magnetic fields during pregnancy is consistently outdated. However, it has been concluded that there are no particular deviations with regard to the duration of pregnancy, premature births, miscarriages, and birth weight. Epidemiological studies are lacking. With a focus on healthcare personnel, there is a considerable need for high-quality data, particularly on the consequences of long-term exposure to electromagnetic fields from clinical MRI and the effects on pregnancy. · Short-term sensory effects such as vertigo, metallic taste, phosphenes as well as neurocognitive and neurological behavioral effects may occur upon exposure to magnetic fields.. · Long-term effects mainly concern quality of sleep, which can be associated with an increased risk of accidents.. · When pregnant women were exposed to magnetic fields, no particular deviations were found with regard to the duration of pregnancy, premature births, miscarriages, and birth weight.. · König AM, Pöschke A, Mahnken AH. Health risks for medical personnel due to magnetic fields in magnetic resonance imaging. Rofo 2025; 197: 135-144.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1055/a-2296-3860 | DOI Listing |
Sensors (Basel)
January 2025
Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.
Optically pumped magnetometers (OPMs) functioning in the spin-exchange relaxation-free (SERF) regime have emerged as attractive options for measuring weak magnetic fields, owing to their portability and remarkable sensitivity. The operation of SERF-OPM critically relies on the ambient magnetic field; thus, a magnetic field compensation device is commonly employed to mitigate the ambient magnetic field to near zero. Nonetheless, the bias of the OPM may influence the compensation impact, a subject that remains unexamined.
View Article and Find Full Text PDFMolecules
January 2025
College of Science, Liaoning Petrochemical University, Fushun 113001, China.
The electronic structure characteristics of bilayer graphyne, bilayer graphdiyne, and bilayer graphtriyne were systematically studied using molecular orbital (MO) analysis, density of states (DOS), and interaction region indicator (IRI) methods. The delocalization characteristics of the out-of-plane and in-plane π electrons (i.e.
View Article and Find Full Text PDFLife (Basel)
December 2024
Department of Cardiology, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland.
The aim of this study was to evaluate the effectiveness of Fascial Manipulation in patients with disc herniations of the lumbar spine confirmed by magnetic resonance imaging. This study included 69 patients with intervertebral disc damage of the lumbar spine, as confirmed by magnetic resonance imaging. Patients were divided into two groups: a study group and a control group.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Laboratory for Heteroepitaxial Growth of Functional Materials & Devices, Department of Chemical & Biological Engineering, State University of New York (SUNY) at Buffalo, Buffalo, NY 14260, USA.
This study analyzes the calculation of the critical current density by means of Bean's critical state model, using the equation formulated by Gyorgy et al. and other similar equations derived from it reported in the literature. While estimations of using Bean's model are widely performed, improper use of different equations with different magnetic units and pre-factors leads to confusion and to significant errors in the reported values of .
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Life Sciences Division, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC J4B 6Y4, Canada.
A novel approach to protein quantification utilizing a microfluidic platform activated by a magnetic assembly of functionalized magnetic beads around soft magnetic capture centers is presented. Functionalized magnetic beads, known for their high surface area and facile manipulation under external magnetic fields, are injected inside microfluidic channels and immobilized magnetically on the surface of glass-coated soft magnetic microwires placed along the symmetry axis of these channels. A fluorescent (Cy5) immunomagnetic sandwich ELISA is then performed by sequentially flowing the sample and all necessary reagents in the microfluidic channels.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!