Simple and rapid molecular detection technologies for authenticating animal species are urgently needed for food safety and authenticity. This study established a new direct-fast quantitative polymerase chain reaction (qPCR) detection technology for beef to achieve rapid and on-site nucleic acid detection in food. This technology can complete nucleic acid extraction in 4 min using a new type of food nucleic acid-releasing agent, followed by direct amplification of the DNA sample by fast qPCR in 25 min. The results indicated that direct-fast qPCR can specifically identify beef and can also identify 0.00001% of beef components in artificially simulated meat mixtures, with a detection precision variation coefficient of <4%. This method can be used to effectively identify beef in different food samples. As a simple, fast, and accurate molecular detection technology for beef, this method may provide a new tool for the on-site detection of beef components in food.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2024.140473DOI Listing

Publication Analysis

Top Keywords

nucleic acid
12
simple rapid
8
food nucleic
8
direct-fast qpcr
8
rapid identification
4
beef
4
identification beef
4
beef 30 min
4
food
4
30 min food
4

Similar Publications

Exploring markers in nursing care of prostate cancer.

Medicine (Baltimore)

January 2025

Urology and Metabolic Rehabilitation Center, Beijing Rehabilitation Hospital, Capital Medical University, Xixia Zhuang, Badachu, Shijingshan District, Beijing, China.

Prostate cancer is epithelial malignant prostate hyperplasia caused by a tumor. We found prostate cancer GSE141551 and GSE200879 profiles from gene expression omnibus database, followed by differentially expressed genes (DEGs) analysis, weighted gene co-expression network analysis, protein-protein interaction analysis, gene function enrichment analysis, and comparative toxicology database analysis. Finally, the gene expression heat map was drawn, and miRNA information regulating core DEGs was retrieved.

View Article and Find Full Text PDF

The roles of STAT1, CASP8, and MYD88 in the care of ischemic stroke.

Medicine (Baltimore)

January 2025

Nerve Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Xixia Zhuang, Badachu, Shijingshan District, Beijing, China.

Ischemic stroke is caused by blockage of blood vessels in brain, affecting normal function. The roles of Signal Transformer and Activator of Transcription 1 (STAT1), CASP8, and MYD88 in ischemic stroke and its care are unclear. The ischemic stroke datasets GSE16561 and GSE180470 were found from the Gene Expression Omnibus database.

View Article and Find Full Text PDF

Background: Recently, microRNAs (miRNAs) have been applied as biomarkers for diffuse large B-cell lymphoma (DLBCL) patients. Early diagnosis and management of DLBCL can improve patient survival and prognosis.

Aims: This systematic review and meta-analysis aimed to evaluate the diagnostic and prognostic accuracy of miRNA biomarkers in DLBCL patients.

View Article and Find Full Text PDF

The cation-proton antiporter (CPA) superfamily plays pivotal roles in regulating cellular ion and pH homeostasis in plants. To date, the regulatory functions of CPA family members in rice (Oryza sativa L.) have not been elucidated.

View Article and Find Full Text PDF

Glucocorticosteroids remain the most common pharmaceutical approach for the treatment of equine asthma but can be associated with significant side effects, including respiratory microbiome alterations. The goal of the study was to assess the impact of 2% lidocaine nebulization, a projected alternative treatment of equine asthma, on the healthy equine respiratory microbiota. A prospective, randomized, controlled, blinded, 2-way crossover study was performed, to assess the effect of 1 mg/kg 2% lidocaine (7 treatments over 4 days) on the equine respiratory microbiota compared to control horses (saline and no treatment).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!