Advancing molecular understanding in high moisture extrusion for plant-based meat analogs: Challenges and perspectives.

Food Chem

College of Food Science, Northeast Agricultural University, Harbin 150030, China; Department of Food Science and Technology, National University of Singapore, 117542, Singapore; Heilongjiang Joint Laboratory of Plant-Based Food Science (International Cooperation), Harbin 150030, China. Electronic address:

Published: December 2024

In recent years, meat analogs based on plant proteins have received increasing attention. However, the process of high moisture extrusion (HME), the method for their preparation, has not been thoroughly explored, particularly in terms of elucidating the complex interactions that occur during extrusion, which remain challenging. These interactions arise from the various ingredients added during HME, including proteins, starches, edible gums, dietary fibers, lipids, and enzymes. These ingredients undergo intricate conformational changes and interactions under extreme conditions of high temperature, pressure, and shear, ultimately forming the fibrous structure of meat analogs. This review offers a overview of these ingredients and the molecular interaction changes they undergo during the extrusion process. Additionally, it delves into the major molecular interactions such as disulfide bonding, hydrogen bonding, and hydrophobic interactions, providing detailed insights into each.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2024.140458DOI Listing

Publication Analysis

Top Keywords

meat analogs
12
high moisture
8
moisture extrusion
8
interactions
5
advancing molecular
4
molecular understanding
4
understanding high
4
extrusion
4
extrusion plant-based
4
plant-based meat
4

Similar Publications

Grape pomace (GP), a byproduct of winemaking, has gained significant attention as a sustainable and functional ingredient with applications in the food and nutraceutical industries. This review examines the potential of GP in meat products and analogs, functional foods, and nutraceuticals, highlighting its composition, health benefits, and role in enhancing nutritional and functional properties. Rich in dietary fiber, polyphenols, essential fatty acids, and bioactive compounds, GP exhibits antioxidant, anti-inflammatory, and gut health-promoting effects, making it suitable for various food applications.

View Article and Find Full Text PDF

There is increasing interest in the development of meat analogs due to growing concerns about the environmental, ethical, and health impacts of livestock production and consumption. Among non-meat protein sources, mycoproteins derived from fungal fermentation are emerging as promising meat alternatives because of their natural fibrous structure, high nutritional content, and low environmental impact. However, their poor gelling properties limit their application in creating meat analogs.

View Article and Find Full Text PDF

With growing environmental and health concerns surrounding meat consumption, meat analogs have emerged as sustainable and health-conscious alternatives. A major challenge in developing these products is replicating the fibrous, elastic texture of meat, where microbial transglutaminase (MTG) has shown significant potential. MTG catalyzes protein cross-linking, enhancing the structural integrity of meat analogs.

View Article and Find Full Text PDF

The increasing demand for protein-rich, plant-based foods has driven the development of meat analogs that closely mimic the texture and mouthfeel of animal meat. While plant-based fibrils and electrospun silk fibroin fibers have been explored for texture enhancement and scaffolding in both meat analogs and cell-based meats, the use of wet-spun fibroin protein fibers as a food ingredient remains underexplored. This study investigates the potential of wet-spun recombinant fibroin fibers to enhance the textural properties of meat analogs.

View Article and Find Full Text PDF

Enhancement of sausages shelf life using natural antimicrobials and propolis extract.

Food Sci Biotechnol

January 2025

Department of Food Science and Technology, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran.

The present work assessed the impacts of nisin (200 mg/kg) and nisin-nanoparticles (NNPs; 200 mg/kg) in combination with propolis ethanolic extract (PEE; 1% and 3%) on quality and stability of sausage during refrigerated period. The treated meat batters were mechanically stuffed into polyamide casings, packaged in vacuum conditions and analyzed at days 1, 15, 30 and 45. Sausages treated with combined NNPs and PEE displayed higher total phenolic content (2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!