Angelica sinensis (Oliv.) Diels (AS) is a commonly used herbal medicine and culinary spice known for its gastrointestinal protective properties. Angelica sinensis oil (AO) is the main bioactive component of AS. However, the therapeutic effects and mechanisms of AO on the gastrointestinal tract remain unclear. In this study, we aim to investigated the potential of AO in restoring gut microbiota disorder and metabolic disruptions associated with ulcerative colitis (UC). A systematic chemical characterization of AO was conducted using GC×GC-Q TOF-MS. A UC mouse model was established by freely drinking DSS to assess the efficacy of AO. Utilizing 16 S rRNA sequencing in combination with untargeted metabolomics analysis of serum, we identified alterations in gut microbiota, differential metabolites, and pathways influenced by AO in UC treatment, thereby elucidating the therapeutic mechanism of AO in UC management. Pharmacodynamic results indicated that AO effectively inhibited the content of inflammation mediators, such as Interleukin-1β, Interleukin-6 and tumor necrosis factor-α, and proserved colon tissue integrity in UC mice. Furthermore, AO significantly downregulated the abundance of pathogenic bacteria (Bacteroidetes, Proteobacteria, and Desulfobacteriaceae) while increasing the abundance of beneficial bacteria (Firmicutes, Blautia, Akkermansia, and Lachnospiraceae). Metabolomics analysis highlighted significant disruptions in endogenous metabolism in UC mice, with a notable restoration of SphK1 and S1P levels following AO administration. Besides, we discovered that AO regulated the balance of sphingolipid metabolism and protected the intestinal barrier, potentially through the SphK1/MAPK signaling pathway. Overall, this study indicated that AO effectively ameliorates the clinical manifestations of UC by synergistically regulating gut microbe and metabolite homeostasis. AO emerges as a potential functional and therapeutic ingredient for UC treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jpba.2024.116367DOI Listing

Publication Analysis

Top Keywords

metabolomics analysis
12
angelica sinensis
12
16 s rrna
8
sinensis oil
8
ulcerative colitis
8
gut microbiota
8
indicated effectively
8
integrating 16 s
4
rrna gene
4
gene sequencing
4

Similar Publications

Profiling Exosomal Metabolomics as a Means for Diagnosis and Researching Early-Stage Hypertensive Nephropathy.

Br J Hosp Med (Lond)

January 2025

Department of Cardiology, The Second Affiliated Hospital of Chengdu Medical College, Nuclear Industry 416 Hospital, Chengdu, Sichuan, China.

Hypertension (HT) is a prevalent medical condition showing an increasing incidence rate in various populations over recent years. Long-term hypertension increases the risk of the occurrence of hypertensive nephropathy (HTN), which is also a health-threatening disorder. Given that very little is known about the pathogenesis of HTN, this study was designed to identify disease biomarkers, which enable early diagnosis of the disease, through the utilization of high-throughput untargeted metabolomics strategies.

View Article and Find Full Text PDF

Two pathogen-inducible UDP-glycosyltransferases, UGT73C3 and UGT73C4, catalyze the glycosylation of pinoresinol to promote plant immunity in Arabidopsis.

Plant Commun

January 2025

The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education; Shandong Key Laboratory of Precision Molecular Crop Design and Breeding; School of Life Sciences, Shandong University, Qingdao 266237, China. Electronic address:

UDP-glycosyltransferases (UGTs) constitute the largest glycosyltransferase family in the plant kingdom. They are responsible for transferring sugar moieties onto various small molecules to control many metabolic processes. However, their physiological significance in plants is largely unknown.

View Article and Find Full Text PDF

Revisiting the Metabolism of Donepezil in Rats Using Non-Targeted Metabolomics and Molecular Networking.

Pharmaceutics

January 2025

BK21 FOUR KNU Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea.

: Although donepezil, a reversible acetylcholinesterase inhibitor, has been in use since 1996, its metabolic characteristics remain poorly characterized. Therefore, this study aims to investigate the in vivo metabolism of donepezil using liquid chromatography-high-resolution mass spectrometry (LC-HRMS) based on a molecular networking (MN) approach integrated with a non-targeted metabolomics approach. : After the oral administration of donepezil (30 mg/kg) in rats, urine, feces, and liver samples were collected for LC-HRMS analysis.

View Article and Find Full Text PDF

: The mechanism of polysaccharide-based nanocarriers in enhancing photodynamic immunotherapy in colorectal cancer (CRC) remains poorly understood. : The effects of TPA-3BCP-loaded cholesteryl hemisuccinate- polysaccharide nanoparticles (DOP@3BCP NPs) and their potential molecular mechanism of action in a tumor-bearing mouse model of CRC were investigated using non-targeted metabolomics and transcriptomics. Meanwhile, a histopathological analysis (H&E staining, Ki67 staining, and TUNEL assay) and a qRT-PCR analysis revealed the antitumor effects of DOP@3BCP NPs with and without light activation.

View Article and Find Full Text PDF

Lignin Metabolism Is Crucial in the Plant Responses to (Shen) in L.

Plants (Basel)

January 2025

Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.

(Shen) (Hemiptera: Cicadellidae) is a devastating insect pest species of , significantly affecting the yield and quality of tea. Due to growing concerns over the irrational use of insecticides and associated food safety, it is crucial to better understand the innate resistance mechanism of tea trees to . This study aims to explore the responses of tea trees to different levels of infestation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!