The typically low solubility and gelation capacity of plant proteins can impose challenges in the design of high-quality plant-based foods. The acid used during the precipitation step of plant protein isolate extraction can influence protein functionality. Here, acetic acid and citric acid were used to extract quinoa protein isolate (QPI) from quinoa flour, as these acids are more kosmotropic than the commonly used HCl, promoting the stabilisation of the native protein structure. While proximate analysis showed that total protein was similar for the three isolates, precipitation with kosmotropic acids increased soluble protein, which correlated positively with gel strength. Microstructure analysis revealed that these gels contained a less porous protein network with lipid droplet inclusions. This study shows that the choice of precipitation acid offers an opportunity to tailor the properties of quinoa protein isolate for application, a strategy that is likely applicable to other plant protein isolates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2024.140399 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!