A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A colorimetric/electrochemical microfluidic biosensor using target-triggered DNA hydrogels for organophosphorus detection. | LitMetric

A colorimetric/electrochemical microfluidic biosensor using target-triggered DNA hydrogels for organophosphorus detection.

Biosens Bioelectron

Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Military Medical Sciences Academy, Academy of Military Sciences, Tianjin, 300050, China. Electronic address:

Published: November 2024

Organophosphorus compounds are widely distributed and highly toxic to the environment and living organisms. The current detection of organophosphorus compounds is based on a single-mode method, which makes it challenging to achieve good portability, accuracy, and sensitivity simultaneously. This study designed a multifunctional microfluidic chip to develop a dual-mode biosensor employing a DNA hydrogel as a carrier and aptamers as recognition probes for the colorimetric/electrochemical detection of malathion, an organophosphorus compound. The biosensor balanced portability and stability by combining a microfluidic chip and target-triggered DNA hydrogel-sensing technologies. Moreover, the biosensor based on target-triggered DNA hydrogel modified microfluidic developed in this study exhibited a dual-mode response to malathion, providing both colorimetric and electrochemical signals. The colorimetric mode enables rapid visualization and qualitative detection and, when combined with a smartphone, allows on-site quantitative analysis with a detection limit of 56 nM. The electrochemical mode offers a broad linear range (0.01-3000 μM) and high sensitivity (a limit of detection of 5 nM). The two modes could validate each other and improve the accuracy of detection. The colorimetric/electrochemical dual-mode biosensor based on target-triggered DNA hydrogel modified microfluidic chip offers a portable, simple, accurate, and sensitive strategy for detecting harmful environmental and food substances.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2024.116558DOI Listing

Publication Analysis

Top Keywords

target-triggered dna
16
microfluidic chip
12
dna hydrogel
12
detection organophosphorus
8
organophosphorus compounds
8
dual-mode biosensor
8
biosensor based
8
based target-triggered
8
hydrogel modified
8
modified microfluidic
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!