Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Hydrogen peroxide (HO) is a crucial eco-friendly oxidizer with increasing demand due to its wide range of applications. Activating O with catalysts to generate HO on-site offers a promising alternative to traditional production methods. Here, we design unique crystalline/amorphous heterophase Fe-Mn core-shell chains (ZVI-Mn) for efficient on-site generation of HO and manipulation of subsequent HO activation. The yield of HO on-site produced by ZVI-Mn in water within 5 min was 103.7 mg·L, which was much greater than that of zero-valent iron (ZVI) and amorphous Mn (A-Mn) (0 and 42.5 mg·L). Raman and density functional theory (DFT) calculations confirmed that *OOH is the key species involved in the on-site generation of HO. Electrochemical tests confirmed the excellent electron-transferring ability, while electron paramagnetic resonance (EPR) revealed oxygen vacancy defects in the catalysts, which proved to be conducive to improving the catalytic activity of ZVI-Mn. Additionally, by regulating the pH of aqueous solution, ZVI-Mn can simultaneously achieve efficient on-site generation of HO and in-situ removal of enrofloxacin from aqueous solution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2024.07.123 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!