Enhanced third-order nonlinear optical properties of ZnO@C-N composite microspheres.

Spectrochim Acta A Mol Biomol Spectrosc

Department of Physics, Faculty of Science, Shahid Rajaee Teacher Training University, Lavizan, P. O. Box 16788-15811, Tehran, Iran. Electronic address:

Published: December 2024

We report the third-order nonlinear optical (NLO) properties of ZnO@C-N composite microspheres and pure ZnO which have been investigated with the Z-scan technique under continuous wave laser. ZnO@C-N composite microspheres have been hydrothermally synthesized at two different precursor concentrations to have structures at different impurity levels. Moreover, pure ZnO is prepared under the annealing process. The nonlinear optical absorption of samples was measured by using the open-aperture Z-scan technique and was evaluated relating to the two-photon absorption (TPA) mechanism. Moreover, both ZnO@C-N and ZnO microstructures exhibited a negative nonlinear refractive index (NLR) referring to the self-defocusing effect. The order of the (NLR) value, is about 10(cm/W) and, the NLA coefficients of specimens are in the order of 10(cm/W). The NLA coefficient has a similar behavior as the NLR versus increasing incident intensity of the laser. The results show that the nonlinearity response of ZnO@C-N composites is higher than the pure ZnO and ZnO@C-N at higher precursor concentrations exhibits the maximum amount of NLA and NLR coefficients compared to other samples. This observation which is attributed to the change in optical and structural properties of material due to impurity presence, underscores the presence of impurity for engineering materials to improve the nonlinearity properties.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2024.124799DOI Listing

Publication Analysis

Top Keywords

nonlinear optical
12
zno@c-n composite
12
composite microspheres
12
pure zno
12
third-order nonlinear
8
properties zno@c-n
8
z-scan technique
8
precursor concentrations
8
10cm/w nla
8
zno@c-n
6

Similar Publications

Nanophotonic inspection of deep-subwavelength integrated optoelectronic chips.

Sci Adv

January 2025

Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 510632, China.

Artificial nanostructures with ultrafine and deep-subwavelength features have emerged as a paradigm-shifting platform to advanced light-field management, becoming key building blocks for high-performance integrated optoelectronics and flat optics. However, direct optical inspection of integrated chips remains a missing metrology gap that hinders quick feedback between design and fabrications. Here, we demonstrate that photothermal nonlinear scattering microscopy can be used for direct imaging and resolving of integrated optoelectronic chips beyond the diffraction limit.

View Article and Find Full Text PDF

A comparative analysis of perceptual noise in lateral and depth motion: Evidence from eye tracking.

J Vis

January 2025

Vision and Control of Action (VISCA) Group, Department of Cognition, Development and Psychology of Education, Institut de Neurociències, Universitat de Barcelona, Barcelona, Catalonia, Spain.

The characterization of how precisely we perceive visual speed has traditionally relied on psychophysical judgments in discrimination tasks. Such tasks are often considered laborious and susceptible to biases, particularly without the involvement of highly trained participants. Additionally, thresholds for motion-in-depth perception are frequently reported as higher compared to lateral motion, a discrepancy that contrasts with everyday visuomotor tasks.

View Article and Find Full Text PDF

Given their molecular properties and electronic structure, graphyne and graphdiyne are promising materials with numerous applications in different fields of material science. Dehydrobenzoannules (DBAs) are candidates that can serve as building blocks for synthesizing and designing new 2D carbon allotropes; however, only a few graphynes have been produced on a practical scale. Herein, we present our investigation of three DBAs, which serve as a model to understand the relationship between the structure and property, contributing to 2D carbon allotropes' rational design and synthetic effort.

View Article and Find Full Text PDF

AgGaS and Derivatives: Design, Synthesis, and Optical Properties.

Nanomaterials (Basel)

January 2025

College of Electronic and Optical Engineering and College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.

Silver gallium sulfide (AgGaS) is a ternary ABX-type semiconductor featuring a direct bandgap and high chemical stability. Structurally resembling diamond, AgGaS has gained considerable attention as a highly promising material for nonlinear optical applications such as second harmonic generation and optical parametric oscillation. In attempts to expand the research scope, on the one hand, AgGaS-derived bulk materials with similar diamond-like configurations have been investigated for the enhancement of nonlinear optics performance, especially the improvement of laser-induced damage thresholds and/or nonlinear coefficients; on the other hand, nanoscale AgGaS and its derivatives have been synthesized with sizes as low as the exciton Bohr radius for the realization of potential applications in the fields of optoelectronics and lighting.

View Article and Find Full Text PDF

A Cu(I)-Based MOF with Nonlinear Optical Properties and a Favorable Optical Limit Threshold.

Nanomaterials (Basel)

January 2025

Key Laboratory of Organic Integrated Circuit, Tianjin Key Laboratory of Molecular Optoelectronic Sciences & Ministry of Education, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.

The exploitation of high-performance third-order nonlinear optical (NLO) materials that have a favorable optical limit (OL) threshold is essential due to a rise in the application of ultra-intense lasers. In this study, a Cu-based MOF (denoted as Cu-bpy) was synthesized, and its third-order NLO and OL properties were investigated using the Z-scan technique with the nanosecond laser pulse excitation set at 532 nm. The Cu-bpy exhibits a typical rate of reverse saturable absorption (RSA) with a third-order nonlinear absorption coefficient of 100 cm GW and a favorable OL threshold of 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!