Enhancing zinc biofortification and mitigating cadmium toxicity in soil-earthworm-spinach systems using different zinc sources.

J Hazard Mater

College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, China. Electronic address:

Published: September 2024

Cadmium (Cd) pollution poses significant threats to soil organisms and human health by contaminating the food chain. This study aimed to assess the impact of various concentrations (50, 250, and 500 mg·kg) of zinc oxide nanoparticles (ZnO NPs), bulk ZnO, and ZnSO on morphological changes and toxic effects of Cd in the presence of earthworms and spinach. The results showed that Zn application markedly improved spinach growth parameters (such as fresh weight, plant height, root length, and root-specific surface area) and root morphology while significantly reducing Cd concentration and Cd bioconcentration factors (BCF-Cd) in spinach and earthworms, with ZnO NPs exhibiting the most pronounced effects. Earthworm, spinach root, and shoot Cd concentration decreased by 82.3 %, 77.0 %, and 75.6 %, respectively, compared to CK. Sequential-step extraction (BCR) analysis revealed a shift in soil Cd from stable to available forms, consistent with the available Cd (DTPA-Cd) results. All Zn treatments significantly reduced Cd accumulation, alleviated Cd-induced stress, and promoted spinach growth, with ZnO NPs demonstrating the highest Cd reduction and Zn bioaugmentation efficiencies compared to bulk ZnO and ZnSO at equivalent concentrations. Therefore, ZnO NPs offer a safer and more effective option for agricultural production and soil heavy metal pollution management than other Zn fertilizers.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2024.135243DOI Listing

Publication Analysis

Top Keywords

zno nps
16
bulk zno
8
zno znso
8
spinach growth
8
zno
6
spinach
5
enhancing zinc
4
zinc biofortification
4
biofortification mitigating
4
mitigating cadmium
4

Similar Publications

Proteomic analysis of Trichoderma harzianum secretome and their role in the biosynthesis of zinc/iron oxide nanoparticles.

Sci Rep

January 2025

Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), Fundación para Investigaciones Biológicas Aplicadas (FIBA), Mar del Plata, 7600, Argentina.

The fungal green synthesis of nanoparticles (NPs) has gained great interest since it is a cost-effective and easy handling method. The process is simple because fungi secrete metabolites and proteins capable of reducing metal salts in aqueous solution, however the mechanism remains largely unknown. The aim of this study was to analyze the secretome of a Trichoderma harzianum strain during the mycobiosynthesis process of zinc and iron nanoparticles.

View Article and Find Full Text PDF

Breast cancer ranks as the second leading reason of cancer mortality among females globally, emphasizing the critical need for novel anticancer treatments. In current work, berberine-zinc oxide conjugated chitosan nanoparticles were synthesized and characterized using various characterization techniques. The cytotoxic effects of CS-ZnO-Ber NPs on MCF-7 cells were assessed using the MTT assay.

View Article and Find Full Text PDF

Soil salinization severely restricts the growth and development of crops globally, especially in the northwest Loess Plateau, where apples constitute a pillar industry. Nanomaterials, leveraging their unique properties, can facilitate the transport of nutrients to crops, thereby enhancing plant growth and development under stress conditions. To investigate the effects of nano zinc oxide (ZnO NP) on the growth and physiological characteristics of apple self-rooted rootstock M9-T337 seedlings under saline alkali stress, one-year-old M9-T337 seedlings were used as experimental materials and ZnO NPs were used as donors for pot experiment.

View Article and Find Full Text PDF

Size Distribution of Zinc Oxide Nanoparticles Depending on the Temperature of Electrochemical Synthesis.

Materials (Basel)

January 2025

Department of Mechanical Engineering and Agrophysics, Faculty of Production and Power Engineering, University of Agriculture in Krakow, Balicka Street 116 B, 30-149 Krakow, Poland.

One of the methods for obtaining zinc oxide nanoparticles (ZnO NPs) is electrochemical synthesis. In this study, the anodic dissolution process of metallic zinc in alcohol solutions of LiCl was used to synthesize ZnO NPs. The products were obtained as colloidal suspensions in an electrolyte solution.

View Article and Find Full Text PDF

This study presents an efficient and environmentally sustainable synthesis of ZnO nanoparticles using a starch-mediated sol-gel approach. This method yields crystalline mesoporous ZnO NPs with a hexagonal wurtzite structure. The synthesized nanoparticles demonstrated remarkable multifunctionality across three critical applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!