Nano-concrete, which is an admixture of nanomaterials in concrete recipes, has been investigated to overcome the limitations of existing concrete, such as its stability and strength. However, there is no information on the human health effects of broken-down dust released during the construction and demolition efforts. In this study, we prepared an inhalable fraction of multi-walled carbon nanotube-containing nano-concrete dust and performed comparative toxicity studies with conventional concrete dust and DQ12 using a rat intratracheal instillation model. Although the recipes for concrete and nano-concrete are entirely different, the pulverized dust samples showed similar physicochemical properties, such as 0.46-0.48 µm diameter and chemical composition. Both concrete and nano-concrete dust exhibited similar patterns and magnitudes, representing acute neutrophilic inflammation and chronic active inflammation with lymphocyte infiltration. The toxicity endpoints of the tested particles at both time points showed an excellent correlation with the reactive oxygen species levels released from the alveolar macrophages, highlighting that alveolar macrophages are the primary target cells and that the oxidative stress paradigm is the main toxicity mechanism of the tested particles. In addition, the toxicity potentials of both concrete and nano-concrete dust were more than 10 times lower than that of DQ12.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2024.135214DOI Listing

Publication Analysis

Top Keywords

nano-concrete dust
16
concrete nano-concrete
12
multi-walled carbon
8
carbon nanotube-containing
8
nanotube-containing nano-concrete
8
dust
8
conventional concrete
8
concrete dust
8
dust dq12
8
tested particles
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!