Objective: The selection of appropriate microsurgical approaches to treat thalamic pathologies is currently largely subjective. The objective of this study was to provide a structured cartography map for surgical navigation to treat gliomas involving different surfaces of the thalamus.

Methods: Fifteen formalin-fixed, silicone-injected cadavers (30 sides) were dissected, and 10 adult brain specimens (20 sides) were used to illustrate thalamic microsurgical anatomy using the Klingler fiber dissection technique. Exposures and trajectories for the six most common microsurgical approaches were depicted using MR data from healthy subjects converted into surface-rendered 3D virtual brain models. Additionally, thalamic surfaces exposed with all six approaches were color mapped on the virtual 3D model and compared side-by-side in 360° views with previously reported microsurgical approaches. These 3D models were then used in conjunction with topographic data to guide cadaveric dissection steps.

Results: There are two general surgical routes to thalamic lesions: the subarachnoid transcisternal and transcortical routes. The transcisternal route consists of the following three approaches: 1) anterior interhemispheric transcallosal approach, which exposes the anterior and superior thalamus; 2) posterior interhemispheric transcallosal approach, which exposes the posterosuperior thalamus; and 3) supracerebellar infratentorial approach, which exposes the posteromedial cisternal thalamus and can be extended laterally to approach the posterolateral thalamus by cutting the tentorium. The three transcortical approaches are the 1) superior parietal lobule approach, which exposes the posterosuperior thalamus and is particularly advantageous in the setting of hydrocephalus; 2) transtemporal gyrus approach, which exposes the inferolateral thalamus; and 3) transsylvian transinsular approach, which exposes the lateral thalamus (slightly more superiorly and posteriorly) and is advantageous for pathologies extending laterally into the peduncle, lenticular nucleus, or insula.

Conclusions: Microsurgical approaches to thalamic gliomas continue to be challenging. Nonetheless, safe and effective cisternal, ventricular, and cortical corridors can be developed with thoughtful planning, anatomical understanding, and knowledge of the advantages, risks, and limitations of each approach. In some cases, it is wise to combine these approaches with staged procedures, as the authors demonstrate in Part 2. In Part 1 of this two-part series, they discuss thalamic microsurgical anatomy and illustrate the trajectory and exposures of all six approaches to guide decision-making. Part 2 discusses their thalamic glioma microsurgical case series, which utilizes these microsurgical approaches.

Download full-text PDF

Source
http://dx.doi.org/10.3171/2024.3.JNS232049DOI Listing

Publication Analysis

Top Keywords

approach exposes
24
microsurgical approaches
20
microsurgical anatomy
12
approaches
11
microsurgical
9
thalamic
8
approaches thalamic
8
thalamic gliomas
8
thalamus
8
thalamic microsurgical
8

Similar Publications

∆-Tetrahydrocannabinol Increases Growth Factor Release by Cultured Adipose Stem Cells and Adipose Tissue in vivo.

Tissue Eng Regen Med

January 2025

Department of Plastic Surgery, Hand Surgery-Burn Center, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany.

Background: Because of its biocompatibility and its soft and dynamic nature, the grafting of adipose tissue is regarded an ideal technique for soft-tissue repair. The adipose stem cells (ASCs) contribute significantly to the regenerative potential of adipose tissue, because they can differentiate into adipocytes and release growth factors for tissue repair and neovascularization to facilitate tissue survival. The present study tested the effect of administering a chronic low dose of ∆-tetrahydrocannabinol (THC) on these regenerative properties, in vitro and in vivo.

View Article and Find Full Text PDF

Data-Driven Equation-Free Dynamics Applied to Many-Protein Complexes: The Microtubule Tip Relaxation.

Biophys J

January 2025

Department of Chemistry, Chicago Center for Theoretical Chemistry, The James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States. Electronic address:

Microtubules (MTs) constitute the largest components of the eukaryotic cytoskeleton and play crucial roles in various cellular processes, including mitosis and intracellular transport. The property allowing MTs to cater to such diverse roles is attributed to dynamic instability, which is coupled to the hydrolysis of GTP (guanosine-5'-triphosphate) to GDP (guanosine-5'-diphosphate) within the β-tubulin monomers. Understanding the equilibrium dynamics and the structural features of both GDP- and GTP-complexed MT tips, especially at an all-atom level, remains challenging for both experimental and computational methods because of their dynamic nature and the prohibitive computational demands of simulating large, many-protein systems.

View Article and Find Full Text PDF

Background: Phaseolus vulgaris is a warm-season crop sensitive to low temperatures, which can adversely affect its growth, yield, and market value. Exogenous growth regulators, such as diethyl aminoethyl hexanoate (DA-6), have shown potential in alleviating stress caused by adverse environmental conditions. However, the effects that DA-6 has on P.

View Article and Find Full Text PDF

Adversarial attacks were commonly considered in computer vision (CV), but their effect on network security apps rests in the field of open investigation. As IoT, AI, and 5G endure to unite and understand the potential of Industry 4.0, security events and incidents on IoT systems have been enlarged.

View Article and Find Full Text PDF

Accidental ingestion of lead (Pb)-contaminated soils represents a major route of Pb exposure for both adults and children, and the development of accessible and cost-effective solutions to reduce Pb poisoning is urgently required. Here, we present an effective and straightforward technique, involving the consumption of cola beverages, for the purpose of lowering blood Pb levels following the ingestion of contaminated soils in animal models. This method facilitated the direct passage of Pb in contaminated soil through the digestive system, enhancing its elimination without absorption into systemic circulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!