Unveiling the Structural and Dynamic Characteristics of Concentrated LiNO Aqueous Solutions through Ultrafast Infrared Spectroscopy and Molecular Dynamics Simulations.

J Phys Chem Lett

Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.

Published: August 2024

Highly concentrated aqueous electrolytes have attracted a significant amount of attention for their potential applications in lithium-ion batteries. Nevertheless, a comprehensive understanding of the Li solvation structure and its migration within electrolyte solutions remains elusive. This study employs linear vibrational spectroscopy, ultrafast infrared spectroscopy, and molecular dynamics (MD) simulations to elucidate the structural dynamics in LiNO solutions by using intrinsic and extrinsic vibrational probes. The N-O stretching vibrations of NO exhibit a distinct spectral splitting, attributed to its asymmetric interaction with the surrounding solvation structure. Analysis of the vibrational relaxation dynamics of intrinsic and extrinsic probes, in combination with MD simulations, reveals cage-like networks formed through electrostatic interactions between Li and NO. This microscopic heterogeneity is reflected in the intertwined arrangement of ions and water molecules. Furthermore, both vehicular transport and structural diffusion assisted by solvent rearrangement for Li were analyzed, which are closely linked with the bulk concentration.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.4c01449DOI Listing

Publication Analysis

Top Keywords

ultrafast infrared
8
infrared spectroscopy
8
spectroscopy molecular
8
molecular dynamics
8
dynamics simulations
8
solvation structure
8
intrinsic extrinsic
8
unveiling structural
4
structural dynamic
4
dynamic characteristics
4

Similar Publications

Laser-induced photothermal therapy using gold nanoparticles (AuNPs) has emerged as a promising approach to cancer therapy. However, optimizing various laser parameters is critical for enhancing the photothermal conversion efficacy of plasmonic nanomaterials. In this regard, the present study investigates the photothermal effects of dodecanethiol-stabilized hydrophobic ultrasmall spherical AuNPs (TEM size 2.

View Article and Find Full Text PDF

Solvatochromic charge model of isonitrile probes for investigating hydrogen-bond dynamics with 2DIR spectroscopy.

J Chem Phys

January 2025

Department of Chemistry - Ångström Laboratory, Uppsala University, SE-75120 Uppsala, Sweden.

Isonitrile-derivatized amino acids are emerging as highly effective infrared (IR) probes for investigating the structures and dynamics of hydrogen (H)-bonds. These probes enable the quantification of chemical exchange processes in solute-solvent complexes via two-dimensional IR spectroscopy and hold significant promise for site-specific dynamic studies within proteins. Despite their potential, theoretical models that elucidate the solvatochromism of isonitriles remain underdeveloped.

View Article and Find Full Text PDF

A Rapidly Synthesized, Ultrasmall Silver Nanocluster for Near-Infrared-II Imaging and Metabolic Studies.

Nano Lett

January 2025

State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.

Article Synopsis
  • Near-infrared-II (NIR-II) imaging is an advanced technique that enhances deep anatomical visualization by reducing issues like autofluorescence and tissue absorption.
  • Current methods for creating NIR-II nanoprobes are inefficient, requiring significant time and effort, which calls for a quicker synthesis method.
  • The study introduces DNA-templated silver nanoclusters (Ag NCs) that can be produced in just 2 minutes and are small enough to penetrate muscle tissue, making them effective for studying metabolic pathways through NIR-II imaging after intramuscular injection.
View Article and Find Full Text PDF

Unipolar Barrier Photodetectors Based on Van Der Waals Heterostructure with Ultra-High Light On/Off Ratio and Fast Speed.

Adv Sci (Weinh)

January 2025

Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiu Long Road, Hefei, 230601, China.

Unipolar barrier architecture is designed to enhance the photodetector's sensitivity by inducing highly asymmetrical barriers, a higher barrier for blocking majority carriers to depressing dark current, and a low minority carrier barrier without impeding the photocurrent flow through the channel. Depressed dark current without block photocurrent is highly desired for uncooled Long-wave infrared (LWIR) photodetection, which can enhance the sensitivity of the photodetector. Here, an excellent unipolar barrier photodetector based on multi-layer (ML) graphene (G) is developed, WSe, and PtSe (G-WSe-PtSe) van der Waals (vdW) heterostructure, in which extremely low dark current of 1.

View Article and Find Full Text PDF

Tunable Multisoliton State Ultrafast Fiber Laser Based on NiSe and Generation of Vector Dual-Wavelength Solitons.

ACS Appl Mater Interfaces

January 2025

College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Lin'an 311300, China.

As a member of the chalcogenide family, NiSe exhibits a direct bandgap of 1.74 eV, making it a promising candidate for nonlinear optical devices. However, its potential in the near-infrared region of the telecommunication band has not been fully explored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!