A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Epigenetic heterogeneity hotspots in human liver disease progression. | LitMetric

Background And Aims: Disruption of the epigenome is a hallmark of human disease, including liver cirrhosis and HCC. While genetic heterogeneity is an established effector of pathologic phenotypes, epigenetic heterogeneity is less well understood. Environmental exposures alter the liver-specific DNA methylation landscape and influence the onset of liver cancer. Given that currently available treatments are unable to target frequently mutated genes in HCC, there is an unmet need for novel therapeutics to prevent or reverse liver damage leading to hepatic tumorigenesis, which the epigenome may provide.

Approach And Results: We performed genome-wide profiling of DNA methylation, copy number, and gene expression from multiple liver regions from 31 patients with liver disease to examine their crosstalk and define the individual and combinatorial contributions of these processes to liver disease progression. We identified epigenetic heterogeneity hotspots that are conserved across patients. Elevated epigenetic heterogeneity is associated with increased gene expression heterogeneity. Cirrhotic regions comprise 2 distinct cohorts-one exclusively epigenetic, and the other where epigenetic and copy number variations collaborate. Epigenetic heterogeneity hotspots are enriched for genes central to liver function (eg, HNF1A ) and known tumor suppressors (eg, RASSF1A ). These hotspots encompass genes including ACSL1 , ACSL5 , MAT1A , and ELFN1 , which have phenotypic effects in functional screens, supporting their relevance to hepatocarcinogenesis. Moreover, epigenetic heterogeneity hotspots are linked to clinical measures of outcome.

Conclusions: Substantial epigenetic heterogeneity arises early in liver disease development, targeting key pathways in the progression and initiation of both cirrhosis and HCC. Integration of epigenetic and transcriptional heterogeneity unveils putative epigenetic regulators of hepatocarcinogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1097/HEP.0000000000001023DOI Listing

Publication Analysis

Top Keywords

epigenetic heterogeneity
28
heterogeneity hotspots
16
liver disease
16
epigenetic
11
liver
9
heterogeneity
9
disease progression
8
cirrhosis hcc
8
dna methylation
8
copy number
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!