Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In RGB-T tracking, there exist rich spatial relationships between the target and backgrounds within multi-modal data as well as sound consistencies of spatial relationships among successive frames, which are crucial for boosting the tracking performance. However, most existing RGB-T trackers overlook such multi-modal spatial relationships and temporal consistencies within RGB-T videos, hindering them from robust tracking and practical applications in complex scenarios. In this paper, we propose a novel Multi-modal Spatial-Temporal Context (MMSTC) network for RGB-T tracking, which employs a Transformer architecture for the construction of reliable multi-modal spatial context information and the effective propagation of temporal context information. Specifically, a Multi-modal Transformer Encoder (MMTE) is designed to achieve the encoding of reliable multi-modal spatial contexts as well as the fusion of multi-modal features. Furthermore, a Quality-aware Transformer Decoder (QATD) is proposed to effectively propagate the tracking cues from historical frames to the current frame, which facilitates the object searching process. Moreover, the proposed MMSTC network can be easily extended to various tracking frameworks. New state-of-the-art results on five prevalent RGB-T tracking benchmarks demonstrate the superiorities of our proposed trackers over existing ones.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TIP.2024.3428316 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!