Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Architectural DNA-binding proteins are key to the organization and compaction of genomic DNA inside cells. Tethered particle motion (TPM) permits analysis of DNA conformation and detection of changes in conformation induced by such proteins at the single molecule level in vitro. As many individual protein-DNA complexes can be investigated in parallel, these experiments have high throughput. TPM is therefore well suited for characterization of the effects of protein-DNA stoichiometry and changes in physicochemical conditions (pH, osmolarity, and temperature). Here, we describe in detail how to perform tethered particle motion experiments on complexes between DNA and architectural proteins to determine their structural and biochemical characteristics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-3930-6_22 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!