Many approaches for measuring three-dimensional chromosomal conformations rely upon formaldehyde crosslinking followed by subsequent proximity ligation, a family of methods exemplified by 3C, Hi-C, etc. Here we provide an alternative crosslinking-free procedure for high-throughput identification of long-range contacts in the chromosomes of enterobacteria, making use of contact-dependent transposition of phage Mu to identify distant loci in close contact. The procedure described here will suffice to provide a comprehensive map of transposition frequencies between tens of thousands of loci in a bacterial genome, with the resolution limited by the diversity of the insertion site library used and the sequencing depth applied.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-3930-6_7 | DOI Listing |
Int J Mol Sci
December 2024
All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia.
Plant genomes possess numerous transposable element (TE) insertions that have occurred during evolution. Most TEs are silenced or diverged; therefore, they lose their ability to encode proteins and are transposed in the genome. Knowledge of active plant TEs and TE-encoded proteins essential for transposition and evasion of plant cell transposon silencing mechanisms remains limited.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
Cancer is a leading cause of death, so continuous efforts into cancer therapy are imperative. In tumor cells, telomerase and oncogene activity are key points for uncontrolled cell growth. Targeting these processes with ligands that inhibit telomerase and/or reduce oncogene expression has been identified as a promising cancer therapy.
View Article and Find Full Text PDFNuclear DNA is organized into a compact three-dimensional (3D) structure that impacts critical cellular processes. High-throughput chromosome conformation capture (Hi-C) is the most widely used method for measuring 3D genome architecture, while linear epigenomic assays, such as ATAC-seq, DNase-seq, and ChIP-seq, are extensively employed to characterize epigenomic regulation. However, the integrative analysis of chromatin interactions and associated epigenomic regulation remains challenging due to the pairwise nature of Hi-C data, mismatched resolution between Hi-C and epigenomic assays, and inconsistencies among analysis tools.
View Article and Find Full Text PDFACS Omega
December 2024
Department of Urology, Suzhou Ninth Hospital affiliated to Soochow University, Suzhou 215000, China.
Nat Commun
January 2025
Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
Nucleosome is the basic structural unit of the genome. During processes like DNA replication and gene transcription, the conformation of nucleosomes undergoes dynamic changes, including DNA unwrapping and rewrapping, as well as histone disassembly and assembly. However, the wrapping characteristics of nucleosomes across the entire genome, including region-specificity and their correlation with higher-order chromatin organization, remains to be studied.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!