Identification and validation of screening models for breast cancer with 3 serum miRNAs in an 11,349 samples mixed cohort.

Breast Cancer

Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 74 Zhongshan 2Nd Road, Yuexiu District, Guangzhou, 510080, China.

Published: November 2024

AI Article Synopsis

  • The study aims to enhance breast cancer prognosis through early detection by establishing a non-invasive screening method using specific serum miRNA levels.
  • The research involved over 11,000 participants and created two machine learning models for breast cancer screening, achieving high performance metrics such as accuracy and area under the curve (AUC).
  • The SM4BC3miR and SSM4BC models demonstrated strong accuracy and stability in identifying breast cancer but require further validation for use in clinical settings.

Article Abstract

Purpose: The study focuses on enhancing breast cancer (BC) prognosis through early detection, aiming to establish a non-invasive, clinically viable BC screening method using specific serum miRNA levels.

Methods: Involving 11,349 participants across BC, 11 other cancer types, and control groups, the study identified serum biomarkers through feature selection and developed two BC screening models using six machine learning algorithms. These models underwent evaluation across test, internal, and external validation sets, assessing performance metrics like accuracy, sensitivity, specificity, and the area under the curve (AUC). Subgroup analysis was conducted to test model stability.

Results: Based on the three serum miRNA biomarkers (miR-1307-3p, miR-5100, and miR-4745-5p), a BC screening model, SM4BC3miR model, was developed. This model achieved AUC performances of 0.986, 0.986, and 0.939 on the test, internal, and external sets, respectively. Furthermore, the SSM4BC model, utilizing ratio scores of miR-1307-3p/miR-5100 and miR-4745-5p/miR-5100, showed AUCs of 0.973, 0.980, and 0.953, respectively. Subgroup analyses underscored both models' robustness and stability.

Conclusion: This research introduced the SM4BC3miR and SSM4BC models, leveraging three specific serum miRNA biomarkers for breast cancer screening. Demonstrating high accuracy and stability, these models present a promising approach for early detection of breast cancer. However, their practical application and effectiveness in clinical settings remain to be further validated.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12282-024-01619-wDOI Listing

Publication Analysis

Top Keywords

breast cancer
16
serum mirna
12
screening models
8
early detection
8
specific serum
8
test internal
8
internal external
8
mirna biomarkers
8
screening
5
models
5

Similar Publications

This study investigates the potential treatment of breast cancer utilizing Gentiana robusta King ex Hook. f. (QJ) through an integrated approach involving network pharmacology, molecular docking, and molecular dynamics simulation.

View Article and Find Full Text PDF

Early prediction of patient responses to neoadjuvant chemotherapy (NACT) is essential for the precision treatment of early breast cancer (EBC). Therefore, this study aims to noninvasively and early predict pathological complete response (pCR). We used dynamic ultrasound (US) imaging changes acquired during NACT, along with clinicopathological features, to create a nomogram and construct a machine learning model.

View Article and Find Full Text PDF

Metaplastic breast cancer (MpBC) is a highly chemoresistant subtype of breast cancer with no standardized therapy options. A clinical study in anthracycline-refractory MpBC patients suggested that nitric oxide synthase (NOS) inhibitor NG-monomethyl-l-arginine (L-NMMA) may augment anti-tumor efficacy of taxane. We report that NOS blockade potentiated response of human MpBC cell lines and tumors to phosphoinositide 3-kinase (PI3K) inhibitor alpelisib and taxane.

View Article and Find Full Text PDF

the evolution of axillary management in breast cancer has witnessed significant changes in recent decades, leading to an overall reduction in surgical interventions. There have been notable shifts in practice, aiming to minimize morbidity while maintaining oncologic outcomes and accurate staging for newly diagnosed breast cancer patients. These advancements have been facilitated by the improved efficacy of adjuvant therapies.

View Article and Find Full Text PDF

the axillary reverse mapping (ARM) procedure aims to preserve the lymphatic drainage structures of the upper extremity during axillary surgery for breast cancer, thereby reducing the risk of lymphedema in the upper limb. Material and this prospective study included 57 patients with breast cancer who underwent SLNB and ARM. The sentinel lymph node (SLN) was identified using a radioactive tracer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!