Pollution from mineral exploitation is an important risk factor affecting surface water environment in mineral regions. It is urgent to construct a simple and accurate model to assess the surface water pollution risk from mineral exploitation in the regional scale. Thus, taking a mining province namely Liaoning in northeastern China as the study area, we proposed a framework to simulate the transport process of pollutants from mineral exploitation points to the surrounding surface water based on the "source-sink" theory. In our framework, we adopted the regional growth method (RGM) to extract the potential polluted water area as the certain "sink" considering the influence of the topography, and then applied Minimum Cumulative Resistance (MCR) model to assess the surface water pollution risk from mineral exploitation. The results revealed that: (1) 9.5% of the water areas were located at the potential impact area of MEPs. (2) The total value of resistance surface in Liaoning is relatively low, and gradually decreased from west to east. (3) MEPs in Liaoning had a high risk and seriously threatened the surface water environment, among 2125 MEPs, 733 MEPs (32.99%) were assessed as extremely high risk level, and about 35% of the MEPs were distributed within 10KM buffer zone of surface water. (4) Water pollution risk of MEPs in Dalian, Tieling, Fuxin and Dandong need to be emphasized. (5) Compared to previous studies, we considered the topographical influence before applying MCR model directly, so the results of water pollution risk were more reliable. This study provides a methodological support and scientific reference for the water environment protection and regional sustainable development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10661-024-12899-2 | DOI Listing |
Natl Sci Rev
January 2025
Center for Advances in Water and Air Quality, Lamar University, Beaumont, TX 77710, USA.
Wetlands in the Qinghai-Tibet Plateau are a unique and fragile ecosystem undergoing rapid changes. We show two unique patterns of mercury (Hg) accumulation in wetland sediments. One is the 'surface peak' in monsoon-controlled regions and the other is the 'subsurface peak' in westerly-controlled regions.
View Article and Find Full Text PDFGreen Chem
December 2024
KU Leuven, Department of Chemistry Celestijnenlaan 200F P.O. box 2404 B-3001 Leuven Belgium
In order to comply with the expected tightening of discharge limits for lithium to surface waters, the lithium-ion battery industry will need access to methods to reduce the concentration of lithium in wastewater down to ppm levels. In this Communication, we discuss the possibility of using sodium and choline soaps as precipitating agents for lithium, comparing the two soap classes and probing the influence of the carbon chain length. It was found that lithium concentrations down to 10 ppm can be reached with sodium stearate, and down to 1 ppm with choline stearate, using a slight excess of the precipitating agent.
View Article and Find Full Text PDFAWWA Water Sci
March 2024
Department of Civil, Construction, and Environmental Engineering, North, Carolina State University, Raleigh, North, Carolina, USA.
Per- and polyfluoroalkyl substances (PFAS) occur widely in drinking water, and consumption of contaminated drinking water is an important human exposure route. Granular activated carbon (GAC) adsorption can effectively remove PFAS from water. To support the design of GAC treatment systems, a rapid bench-scale testing procedure and scale-up approach are needed to assess the effects of GAC type, background water matrix, and empty bed contact time (EBCT) on GAC use rates.
View Article and Find Full Text PDFRSC Adv
January 2025
Chemistry Department, Faculty of Science, Mansoura University Mansoura 35516 Egypt +201000166374.
In this study, stems and leaves of the papaya plant were employed to prepare a high-quality porous adsorbent carbonization and chemical activation using phosphoric acid. This adsorbent demonstrates superior adsorption capabilities for the efficient removal of hazardous alizarin red s (ARS) and methylene blue (MB) dyes. Thus, it contributes to waste reduction and promotes sustainable practices in environmental remediation, aligning with global efforts to develop sustainable materials that address water pollution while supporting circular economy principles.
View Article and Find Full Text PDFR Soc Open Sci
January 2025
State Key Laboratory of Precision Blasting, Jianghan University, Wuhan 430056, People's Republic of China.
Water stemming is an efficient method of removing blasting dust by wetting. There is still a lack of methods for rapid optimization of water stemming components with high wettability. Herein, blasting dust was collected from a tunnel in Chongqing (China) to investigate its removal performance by different water stemmings.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!