Chondroitin sulfate proteoglycans (CSPGs) inhibit sympathetic reinnervation in rodent hearts post-myocardial infarction (MI), causing regional hypoinnervation that is associated with supersensitivity of β-adrenergic receptors and increased arrhythmia susceptibility. To investigate the role of CSPGs and hypoinnervation in the heart of larger mammals, we used a rabbit model of reperfused MI and tested electrophysiological responses to sympathetic nerve stimulation (SNS). Innervated hearts from MI and sham rabbits were optically mapped using voltage and Ca-sensitive dyes. SNS was performed with electrical stimulation of the spinal cord, and β-adrenergic responsiveness was tested using isoproterenol. Sympathetic nerve density and CSPG expression were evaluated using immunohistochemistry. CSPGs were robustly expressed in the infarct region of all MI hearts, and the presence of CSPGs was associated with reduced sympathetic nerve density in the infarct versus remote region. Action potential duration (APD) dispersion and tendency for induction of ventricular tachycardia/fibrillation (VT/VF) were increased with SNS in MI but not sham hearts. SNS decreased APD at 80% repolarization (APD) in MI but not sham hearts, whereas isoproterenol decreased APD in both groups. Isoproterenol also shortened Ca transient duration at 80% repolarization in both groups but to a greater extent in MI hearts. Our data suggest that sympathetic remodeling post-MI is similar between rodents and rabbits, with CSPGs associated with sympathetic hypoinnervation. Despite a reduction in sympathetic nerve density, the infarct region of MI hearts remained responsive to both physiological SNS and isoproterenol, potentially through preserved or elevated β-adrenergic responsiveness, which may underlie increased APD dispersion and tendency for VT/VF. Here, we show that CSPGs are present in the infarcts of rabbit hearts with reperfused MI, where they are associated with reduced sympathetic nerve density. Despite hypoinnervation, sympathetic responsiveness is maintained or enhanced in MI rabbit hearts, which also demonstrate increased APD dispersion and tendency for arrhythmias following sympathetic modulation. Together, this study indicates that the mechanisms of sympathetic remodeling post-MI are similar between rodents and rabbits, with hypoinnervation likely associated with enhanced β-adrenergic sensitivity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11442023PMC
http://dx.doi.org/10.1152/ajpheart.00398.2024DOI Listing

Publication Analysis

Top Keywords

sympathetic nerve
20
nerve density
16
sympathetic
12
apd dispersion
12
dispersion tendency
12
hearts
9
rabbit model
8
model reperfused
8
hypoinnervation associated
8
β-adrenergic responsiveness
8

Similar Publications

Resistant hypertension is defined as office blood pressure >140/90 mm Hg with a mean 24-hour ambulatory blood pressure of >130/80 mm Hg in patients who are compliant with 3 or more antihypertensive medications. Those who persistently fail pharmaceutical therapy may benefit from interventional treatment, such as renal denervation. Sympathetic nervous activity in the kidney is a known contributor to increased blood pressure because it results in efferent and afferent arteriole vasoconstriction, reduced renal blood flow, increased sodium and water reabsorption, and the release of renin.

View Article and Find Full Text PDF

Method for measuring cervical vagal nerve activity in conscious rats.

Am J Physiol Endocrinol Metab

January 2025

Autonomic Physiology Laboratory, Faculty of Life Science and Human Technology, Nara Women's University, Kita-Uoya Nishimachi, Nara, 630-8506, Japan.

The current study aimed to propose a method to directly measure right cervical vagal nerve activity (cVNA) alongside renal sympathetic nerve activity (RSNA) in conscious rats. The right cervical vagus nerve was surgically exposed and fitted with a bipolar electrode to record cVNA. A microcatheter was used to administer levobupivacaine to selectively block afferent cVNA.

View Article and Find Full Text PDF

Central sleep apnea (CSA), a rare polysomnographic finding in the general population, is prevalent in certain cardiovascular conditions including systolic and diastolic left ventricular dysfunction, atrial fibrillation, coronary artery disease, carotid artery stenosis, stroke and use of certain cardiac-related medications. Polysomnographic findings of CSA with adverse cardiovascular impacts include nocturnal hypoxemia and arousals, which can lead to increased sympathetic activity both at night and in the daytime. Among cardiovascular diseases, CSA is most prevalent in patients with left ventricular systolic dysfunction; a large study of more than 900 treated patients has shown a dose dependent relationship between nocturnal desaturation and mortality.

View Article and Find Full Text PDF

[Effect of somatic afferent nerve-visceral nerve circuit in the regulation of the gastrointestinal function with acupuncture and moxibustion].

Zhongguo Zhen Jiu

January 2025

Institute of Acupuncture and Moxibustion, Shandong University of TCM, Jinan 250355, China; Institute of Systematic Chinese Medicine, Shandong University of TCM, Jinan 250355, China.

The distribution of the common acupoints of acupuncture-moxibustion for gastrointestinal diseases conforms to the rule of the segmental homology of somatic afferent nerve-visceral nerve circuit at the spinal cord level. Acupuncture-moxibustion regulates the gastrointestinal function through the nerve-endocrine-immune system, and especially depending on the integrity of the structure and function of nervous system. The somatic afferent nerve-visceral nerve circuit plays an important role in the process of acupuncture and moxibustion for regulating the gastrointestinal function.

View Article and Find Full Text PDF

Gut Neuropathies and Intestinal Motility Disorders.

Neurogastroenterol Motil

January 2025

College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia.

Background: The enteric nervous system plays a key role in the coordination of gastrointestinal motility together with sympathetic, parasympathetic, and extrinsic sensory pathways. In some cases, abnormalities in neural activity in these pathways contribute to disorders of gut motility. Where this is associated with damage or death of enteric neurons, usually detected by microscopy, this is considered a gut neuropathy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!