Introduction: Although the effects of carrying loads on gait biomechanics have been well-documented, to date, little evidence has been provided whether such loads may impact spatial and temporal gait asymmetries under the different foot regions. Therefore, the main purpose of the study was to examine the effects of carrying a standardized police equipment on spatiotemporal gait parameters.
Materials And Methods: In this population-based study, participants were 845 first-year police recruits (age: 21.2 ± 2.3 years; height: 178.1 ± 10.2 cm; weight: 78.4 ± 11.3 kg; body mass index: 24.7 ± 3.2 kg/m2; 609 men and 236 women; 72.1% men and 27.9% women) measured in 2 conditions: (i) "no load" and (ii) "a 3.5 kg load." Spatiotemporal gait parameters were derived from the FDM Zebris pressure platform. Asymmetry was calculated as (xright-xleft)/0.5*(xright + xleft)*100%, where "x" represented a given parameter being calculated and a value closer to 0 denoted greater symmetry.
Results: When compared to "no load" condition, a standardized 3.5 kg/7.7 lb load significantly increased asymmetries in spatial gait parameters as follows: gait phases of stance (mean diff. = 1.05), load response (mean diff. = 0.31), single limb support (mean diff. = 0.56), pre-swing (mean diff. = 0.22), and swing (mean diff. = 0.90) phase, while no significant asymmetries in foot rotation, step, and stride length were observed. For temporal gait parameters, we observed significant asymmetries in step time (mean diff. = -0.01), while no differences in cadence and gait speed were shown.
Conclusions: The findings indicate that the additional load of 3.5 kg/7.7 lb is more likely to increase asymmetries in spatial gait cycle components, opposed to temporal parameters. Thus, external police load may have hazardous effects in increasing overall body asymmetry, which may lead to a higher injury risk and a decreased performance for completing specific everyday tasks.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11737305 | PMC |
http://dx.doi.org/10.1093/milmed/usae358 | DOI Listing |
Hum Mov Sci
January 2025
Sports Physical Therapy Laboratory, School of Physical Education and Sports Science, National and Kapodistrian University of Athens, Greece. Electronic address:
Introduction: Breathing and postural control is reported to be both neuromuscularly and mechanically interdependent. To date, the effects of voluntary abdominal and thoracic breathing (VAB and VTB) on the EMG activity of muscles involved in both respiratory and postural functions, as well as gait biomechanics related to these breathing patterns, have not been investigated in young, healthy adults. The aim of the study was to evaluate the EMG responses of neck and trunk muscles, as well as the kinematic, stability, and kinetic parameters of gait induced by VAB and VTB compared to involuntary breathing (INB).
View Article and Find Full Text PDFActa Bioeng Biomech
June 2024
1Department of Physiotherapy, University of Rzeszów, Rzeszów, Poland.
: This study evaluated changes in selected spatiotemporal and kinematic gait parameters and balance in girls with Adolescent idiopathic scoliosis (AIS) with and without the Chêneau brace. : 15 subjects with scoliosis wearing the Chêneau brace and an equal comparative control group underwent objective gait analysis with the 3D BTS motion caption system. Balance assessment was done with the Kistler platform.
View Article and Find Full Text PDFActa Bioeng Biomech
June 2024
1Graduate School of Humanities and Social Sciences, Hiroshima University, Japan.
: This study aimed to investigate the differences in spatiotemporal gait parameters in patients who underwent surgery for hip fractures when using walking poles and T-canes. : This cross-sectional study enrolled eight patients who underwent surgery for a unilateral hip fracture (mean age of 79.0 ± 7.
View Article and Find Full Text PDFJ Am Podiatr Med Assoc
January 2025
¶Department of Medicine, Division of Rheumatology, Firat University, Elazig, Turkey.
Background: Many factors, such as decreased spinal mobility, pain, and dysfunction can affect gait parameters in patients with ankylosing spondylitis. The purpose of this study was to investigate the effects of plantar fascia enthesitis and disease-specific measurements on gait parameters in patients with ankylosing spondylitis.
Methods: The Win-Track platform was used to evaluate spatiotemporal parameters in patients with ankylosing spondylitis and in healthy controls.
Sci Rep
January 2025
Department of Medicine, Surgery and Dentistry, Center for Neurodegenerative Diseases (CEMAND), University of Salerno, Fisciano, Italy.
Subtle gait and cognitive dysfunction are common in Parkinson's disease (PD), even before most evident clinical manifestations. Such alterations can be assumed as hypothetical phenotypical and prognostic/progression markers. To compare spatiotemporal gait parameters in PD patients with three cognitive status: cognitively intact (PD-noCI), with subjective cognitive impairment (PD-SCI) and with mild cognitive impairment (PD-MCI) in order to detect subclinical gait differences.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!