Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Li-S batteries have attracted attention as next-generation rechargeable batteries owing to their high theoretical capacity and cost-effectiveness. Sparingly solvating electrolytes hold promise because they suppress the dissolution and shuttling of polysulfide intermediates to increase the coulombic efficiency and extend the cycle life. This study investigated the solubility of polysulfide (LiS) in a range of liquid electrolytes, including organic electrolytes, highly concentrated electrolytes, and ionic liquids. The LiS solubility was well correlated with the donor number (DN), estimated Na-NMR, and was lower than 100 mM_(elemental sulfur) in electrolytes with DN < 14, regardless of the type of electrolyte. Highly concentrated electrolytes comprising lithium bis(trifluoromethanesulfonyl)amide (LiTFSA) and linear chain dialkyl ethers such as methyl propyl ether (MPE), -butyl methyl ether (BME), and ethyl propyl ether (EPE) were studied as sparingly solvating electrolytes for Li-S batteries. Monomethyl ethers, such as BME, showed more pronounced Li-ion coordination and higher ionic conductivity, whereas the steric hindrance of the longer alkyl chains in EPE lowered the solvation number, enhanced ion association, and lowered the ionic conductivity despite the solvents having similar dielectric constants. The charge-discharge rate capabilities of Li-S cells with dialkyl ether-based electrolytes were more impressive than those of cells with a localized high-concentration electrolyte using sulfolane (SL) and hydrofluoroether (HFE), [Li(SL)][TFSA]-2HFE. The higher rate performance was attributed to the superior Li-ion transport properties of the dialkyl ether-based electrolytes. A pouch-type cell using lightweight [Li(BME)][TFSA] demonstrated an energy density exceeding 300 W h kg under lean electrolyte conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4fd00024b | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!