Metal-organic frameworks (MOFs), an emerging class of highly ordered crystalline porous materials, possess structural tunability, high specific surface area, well-defined pores, and diverse pore environments and morphologies, making them suitable for various potential applications. Moreover, hydrogen-bonded organic frameworks (HOFs), constructed from organic molecules with complementary hydrogen-bonding patterns, are rapidly evolving into a novel category of porous materials due to their facile mild preparation conditions, solution processability, easy regeneration capability, and excellent biocompatibility. These distinctive advantages have garnered significant attention across diverse fields. Considering the inherent binding affinity between MOFs and HOFs along with the fact that many MOF linkers can serve as building blocks for constructing HOFs, their combination holds promise in creating functional materials with enhanced performance. This feature paper provides an introduction to the interconversion between MOFs and HOFs followed by highlighting the emerging applications of MOF-HOF composites. Finally, we briefly discuss the current challenges associated with future perspectives on MOF-HOF composites.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4cc01875c | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!