CD8 T cell‑related KCTD5 contributes to malignant progression and unfavorable clinical outcome of patients with triple‑negative breast cancer.

Mol Med Rep

Department of Head and Neck, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi 030013, P.R. China.

Published: September 2024

Triple‑negative breast cancer (TNBC) is a highly aggressive and heterogeneous subtype of breast cancer that lacks expression of estrogen receptor, progesterone receptor, and HER2, making it more challenging to treat with targeted therapies. The present study aimed to identify CD8+ T cell‑associated genes, which could provide insight into the mechanisms underlying TNBC to facilitate developing novel immunotherapies. TNBC datasets were downloaded from public databases including The Cancer Genome Atlas, Molecular Taxonomy of Breast Cancer International Consortium, and Gene Expression Omnibus. Candidate genes were identified integrating weighted gene co‑expression network analysis (WGCNA), differential gene expression, protein‑protein‑interaction network construction and univariate Cox regression analysis. Kaplan‑Meier survival, multivariate Cox regression and receiver operating characteristic analysis were performed to evaluate the prognostic value of hub genes. Knockdown experiments, alongside wound healing, Cell Counting Kit‑8 and Transwell migration and invasion assays were performed. In total, seven gene modules were associated with CD8+ T cells using WGCNA, among which potassium channel tetramerization domain 5 (KCTD5) was significantly upregulated in TNBC samples and was associated with poor prognosis. KCTD5 expression inversely associated with infiltration ratios of 'Macrophages M1', 'Plasma cells', and 'γδ T cells', but positively with 'activated Mast cells', 'Macrophages M0', and 'Macrophages M2'. As an independent prognostic indicator for TNBC, KCTD5 was also associated with drug sensitivity and the expression of programmed cell death protein 1, Cytotoxic T‑Lymphocyte‑Associated Protein 4 (CTLA4), CD274), Cluster of Differentiation 86 (CD86), Lymphocyte‑Activation Gene 3 (LAG3), T Cell Immunoreceptor with Ig and ITIM Domains (TIGIT). Knockdown of KCTD5 significantly inhibited viability, migration and invasion of TNBC cells . KCTD5 was suggested to impact the tumor immune microenvironment by influencing the infiltration of immune cells and may serve as a potential therapeutic target for TNBC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11267436PMC
http://dx.doi.org/10.3892/mmr.2024.13290DOI Listing

Publication Analysis

Top Keywords

breast cancer
16
triple‑negative breast
8
gene expression
8
cox regression
8
migration invasion
8
tnbc
7
kctd5
6
cancer
5
expression
5
gene
5

Similar Publications

The implementation and side effect management of immune checkpoint inhibitors in gynecologic oncology: a JAGO/NOGGO survey.

BMC Cancer

January 2025

Young Academy of Gynecologic Oncology (JAGO), Nord-Ostdeutsche Gesellschaft für Gynäkologische Onkologie (NOGGO), Berlin, Germany.

Background: The integration of immune checkpoint inhibitors (ICIs) into routine gynecologic cancer treatment requires a thorough understanding of how to manage immune-related adverse events (irAEs) to ensure patient safety. However, reports on real-world clinical experience in the management of ICIs in gynecologic oncology are very limited. The aim of this survey was to provide a real-world overview of the experiences and the current state of irAE management of ICIs in Germany, Switzerland, and Austria.

View Article and Find Full Text PDF

Background: Over the past twenty years, the post-cancer rehabilitation has been developed, usually in a hospital setting. Although this allows better care organization and improved security, it is perceived as stressful and restrictive by the "cancer survivor". Therefore, the transfer of benefits to everyday life is more difficult, or even uncertain.

View Article and Find Full Text PDF

Triaging mammography with artificial intelligence: an implementation study.

Breast Cancer Res Treat

January 2025

Google Health, 1600 Amphitheatre Pkwy, Mountain View, CA, 94043, USA.

Purpose: Many breast centers are unable to provide immediate results at the time of screening mammography which results in delayed patient care. Implementing artificial intelligence (AI) could identify patients who may have breast cancer and accelerate the time to diagnostic imaging and biopsy diagnosis.

Methods: In this prospective randomized, unblinded, controlled implementation study we enrolled 1000 screening participants between March 2021 and May 2022.

View Article and Find Full Text PDF

Background: The identification of circulating potential biomarkers may help earlier diagnosis of breast cancer, which is critical for effective treatment and better disease outcomes. We aimed to study the role of circ-FAF1 as a diagnostic biomarker in female breast cancer using peripheral blood samples of these patients, and to investigate the relation between circ-FAF1 and different clinicopathological features of the included patients.

Methods And Results: This case-control study enrolled 60 female breast cancer patients and 60 age-matched healthy control subjects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!