Nitrogen (N), as one of the most abundant mineral elements in rice, not only is the primary limiting factor for rice yield, but also impacts plant disease resistance by modulating plant morphology, regulating biochemical characteristics, as well as enhancing metabolic processes. Bacterial blight, a severe bacterial disease caused by pv. (), significantly impairing rice yield and quality. Previous studies have shown that moderate application of nitrate nitrogen can improve plant disease resistance. However, further exploration is urgently required to investigate the involvement of the nitrate nitrogen signaling pathway in conferring resistance against bacterial leaf blight. In this study, we employed transcriptome sequencing to analyze the differentially expressed genes under various concentrations of nitrate supply duringrice bacterial blight infection. Our research reveals that nitrate nitrogen supply influences rice resistance to bacterial leaf blight. Through transcriptomic profiling of rice leaves inoculated under different nitrate nitrogen concentrations, we identified 4815 differentially expressed genes (DEGs) among four comparison groups, with notable differences in DEG enrichment between low and high nitrate nitrogen conditions, with some members of the NPF family implicated and we preliminarily elucidated the molecular regulatory network in which nitrate nitrogen participates in bacterial leaf blight resistance. Our findings provide a novel insight into a mechanism involving the nitrate nitrogen drive wider defense in rice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11254694 | PMC |
http://dx.doi.org/10.3389/fpls.2024.1436912 | DOI Listing |
Water Res X
May 2025
School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China.
Anaerobic ammonia oxidation (anammox) which converts nitrite and ammonium to dinitrogen gas is an energy-efficient nitrogen removal process. One of the bottlenecks for anammox application in wastewater treatment is the stable supply of nitrite for anammox bacteria. Dissimilatory nitrate reduction to ammonium (DNRA) is a process that converts nitrate to nitrite and then to ammonium.
View Article and Find Full Text PDFUnlabelled: The intestinal diarrheal pathogen colonizes the host terminal ileum, a microaerophilic, glucose-poor, nitrate-rich environment. In this environment, respires nitrate and increases transport and utilization of alternative carbon sources via the cAMP receptor protein (CRP), a transcription factor that is active during glucose scarcity. Here we show that nitrate respiration in aerated cultures is under control of CRP and, therefore, glucose availability.
View Article and Find Full Text PDFJ Environ Qual
January 2025
Institute for the Environment, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
Population growth in coastal areas increases nitrogen inputs to receiving waterways and degrades water quality. Wetland habitats, including floodplain forests and marshes, can be effective nitrogen sinks; however, little is known about the effects of chronic point source nutrient enrichment on sediment nitrogen removal in tidally influenced coastal systems. This study characterizes enrichment patterns in two tidal systems affected by wastewater treatment facility (WWTF) effluent and assesses the impact on habitat nitrogen removal via denitrification.
View Article and Find Full Text PDFAdv Mater
January 2025
College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, P. R. China.
The conversion of nitrate-rich wastewater and biomass-derived blocks into high-value products using renewably generated electricity is a promising approach to modulate the artificial carbon and nitrogen cycle. Here, a new synthetic strategy of WO sub-nanoclusters is reported and supported on carbon materials as novel efficient electrocatalysts for nitrate reduction and its coupling with α-keto acids. In acidic solutions, the NH-NHOH selectivity can also optimized by adjusting the potential, with the total FE exceeding 80% over a wide potential range.
View Article and Find Full Text PDFEnviron Res
January 2025
State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China; School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Hong Kong Kowloon, 999077, China. Electronic address:
Bisphenol A (BPA) is a commonly used endocrine-disrupting chemical found in high levels in wastewater worldwide. Aerobic denitrification is a promising alternative to conventional nitrogen removal processes. However, the effects of BPA on this novel nitrogen removal process have rarely been reported.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!