Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Significant attention has been devoted to bioactive implants for bone tissue applications, particularly composite scaffolds based on hydroxyapatite (HaP). This study explores the effects of Magnesium and Titanium oxides on the characteristics of HaP-based composite (HMT) scaffolds. The ceramic nanopowders were synthesized using in situ sol-gel, and then the scaffolds were fabricated by gel-casting technique, followed by heat treatment at 1200 °C. The thermal, microstructural, and structural properties of the samples were investigated by different characterization techniques. It was observed that the formation of the MgTiO phase in the composite scaffold was likely the key factor contributing to the improved mechanical properties. Finally, to evaluate bioactivity and biodegradability, scaffolds were immersed in simulated body fluid (SBF) buffer and analyzed by Field Emission Scanning Electron Microscopy (FESEM), and the viability of human fibroblast cells was assessed using the MTT assay. The composite scaffolds containing the MgTiO phase showed greater HaP layer formation on the scaffold surface, indicating enhanced biocompatibility.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11255589 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2024.e33847 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!