A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Enhancing GFRP fatigue durability for chassis component applications through glass fiber coupling variation. | LitMetric

Enhancing GFRP fatigue durability for chassis component applications through glass fiber coupling variation.

Heliyon

Technical Research Center, Hyundai-Steel, Dangjin-si, Chungnam, 31719, Republic of Korea.

Published: July 2024

As the landscape of mobility trends continues to evolve, concerted efforts have been made to incorporate Carbon Fiber Reinforced Plastic (CFRP) into automotive components. However, the substantial increase in cost relative to the achieved weight reduction has limited its widespread adoption. Consequently, research endeavors have focused on exploring alternative composite materials, adapting fibers such as glass fibers, natural fibers, and recycled fibers, to reduce the cost of composite components. Of particular interest in the automotive industry is the utilization of Glass Fiber Reinforced Plastic (GFRP) in chassis components like leaf springs. Nevertheless, the development of GFRP leaf springs encounters a significant challenge related to the adhesive strength at the interface between epoxy resin and glass fibers, which is crucial for enhancing fatigue durability. While glass fibers were traditionally paired with unsaturated polyester or vinyl ester matrices, the pursuit of improved durability has led to the adoption of epoxy matrices. Regrettably, this transition has not consistently yielded the expected gains in interfacial adhesion. In light of these challenges, this study systematically compares the interfacial adhesion strength and fatigue endurance performance. For comparison, two coupling agents widely used commercially, amino silane and epoxy silane, were selected. Glass fibers treated with each coupling agent were purchased commercially, and glass fiber-reinforced plastic (GFRP) specimens were fabricated using the HP-RTM (High-Pressure Resin Transfer Molding) method. Static property evaluations and fatigue durability assessments were conducted using the fabricated specimens. The results showed that when epoxy silane was used as the coupling agent, the interlaminar shear strength (ILSS) increased by approximately 7 %. Furthermore, SEM(Scanning Electron Microscopes) analysis confirmed a significant enhancement in interfacial adhesion, providing support for the ILSS evaluation results. Consequently, the fatigue durability performance improved by approximately six-fold. This confirms that the improvement in interfacial adhesion due to the change in coupling agents led to enhanced fatigue durability performance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11255442PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e33635DOI Listing

Publication Analysis

Top Keywords

fatigue durability
20
glass fibers
16
interfacial adhesion
16
glass fiber
8
fiber reinforced
8
reinforced plastic
8
plastic gfrp
8
leaf springs
8
coupling agents
8
epoxy silane
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!