L. essential oil (PLEO) has antibacterial and antioxidant properties, which can effectively maintain the quality of fruits and extend their shelf life. In this study, sodium alginate and chitosan were used as wall materials, and PLEO microcapsule powder was used as the core materials to prepare PLEO hydrogel beads. The best results were obtained by using 2%w/v sodium alginate and 1.5%w/v chitosan as wall materials, with a core-to-wall ratio of 2:1 and homogenized for 15 min producing PLEO hydrogel beads with encapsulation efficiency of 82.61 %. For strawberries preservation, PLEO hydrogel beads preservation group had a better effect after 5 d of storage, showing a lower decay rate (15.71 %), better maintaining the hardness of 1.75 kg/cm, and a weight loss of 3.29 %. Furthermore, organic acids and total phenols were retained more in this group, the number of microorganisms was significantly reduced, and sensory qualities were improved, especially taste and color. This study provides important insights into the application of natural preservatives in the food industry and promotes sustainable practices in food preservation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11255502PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e33689DOI Listing

Publication Analysis

Top Keywords

hydrogel beads
16
pleo hydrogel
12
essential oil
8
beads preservation
8
sodium alginate
8
chitosan wall
8
wall materials
8
pleo
5
preparation essential
4
hydrogel
4

Similar Publications

The primary goal of the current work was to construct pH-sensitive nano and microcomposite hydrogel beads based on alginate (AL), carboxymethyl cellulose (CMC), biochar (BC), and two Moroccan clays: Ghassoul (swelling SW) and red (not swelling NSW) nano and microhybrid. The adsorbents, SW + AL, SW + AL + BC, SW + AL + CMC, NSW + AL, NSW + AL + BC, NSW + AL + CMC, AL, and AL + CMC were prepared for the adsorption of the antibiotic sulfadiazine (SDZ). The test samples were characterized using a variety of techniques, including X-Ray Diffraction (XRD), IR spectroscopy (FT-IR), and scanning electron microscopy (SEM), with the molecular structures of the studied additives geometrically optimized using the DFT/B3LYP method and the function 6-311G(d).

View Article and Find Full Text PDF

Carbon dots (CDs) mediated g-CN (CN) is a promising visible-light-driven semiconductor in catalyzing peroxymonosulfate (PMS) for aqueous contaminants remediation. However, the poor dispersibility of powered catalyst and its challenging recyclability impede their broader application. Herein, we embedded FeN bridge within the g-CN framework and immobilized g-CN gel beads (CA/FNCCN) through a 3D cross-linking process with sodium alginate.

View Article and Find Full Text PDF

Cellulose microgel beads fabricated using the dropping technique suffer from structural irregularity and mechanical variability. This limits their translation to biomedical applications that are sensitive to variations in material properties. Ionic salts are often uncontrolled by-products of this technique, despite the known effects of ionic salts on cellulose assembly.

View Article and Find Full Text PDF

Calcium alginate hydrogel is one of the most widely used materials for drug-carrier beads used in drug-delivery systems. In this study, we developed a new method to improve the encapsulation efficiency of ingredients, such as medicines, in calcium alginate hydrogel beads. In the gold standard method, the hydrogel beads are prepared in the liquid phase.

View Article and Find Full Text PDF

Composite gels are a type of soft matter, which contains a continuous three-dimensional crosslinked network and has been embedded with non-gel materials. Compared to pure gels, composite gels show high flexibility and tunability in properties and hence have attracted extensive interest in applications ranging from cancer therapy to tissue engineering. In this study, we incorporated triethylenetetramine (TETA)-functionalized cobalt ferrite nanoparticles (ANPs) into a hydrogel consisting of sodium alginate (SA) and methyl cellulose (MC), and examined the resulting composite gels for controlled drug release.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!