AI Article Synopsis

  • Long-term muscle atrophy and fibrosis from denervation hinder proper muscle recovery, with the TGF-β1-Smad signaling pathway playing a key role in these processes.
  • Research focused on microRNAs, particularly miR-21, reveals its increased expression during muscle atrophy and its involvement in inflammation and fibrosis responses.
  • Inhibiting miR-21 led to reduced muscle fibrosis and atrophy, indicating its role in regulating muscle degeneration, thus suggesting potential therapeutic strategies for muscle recovery.

Article Abstract

Long-term denervation-induced atrophy and fibrosis of skeletal muscle due to denervation leads to poor recovery of muscle function. Studies have shown that the transforming growth factor-β1 (TGF-β1)-Smad signaling pathway plays a central role in muscle atrophy and fibrosis. Recent studies demonstrate the role of microRNAs (miRs) in various pathological conditions, including muscle regeneration. miR-21 has been shown to play a dynamic role in inflammatory responses and in accelerating injury responses to fibrosis. We used both RNA sequencing and quantitative RT-PCR strategies to examine the alternations of miRNAs during denervation-induced gastrocnemius muscle atrophy and fibrosis. Our data showed that MiR-21 was upregulated in denervated gastrocnemius muscle tissue, and TGF-β1treatment increased miR-21 expression. Inhibition of miR-21 reduced gastrocnemius muscle fibrosis and significantly downregulated the expression of -SMAD2/3 and the fibrosis-associated markers TGF-β1, connective tissue growth factor, alpha smooth muscle actin. Masson's trichrome staining revealed that atrophy and fibrosis in gastrocnemius muscle tissue were reduced in the miR-21 inhibition group compared to the control group. We confirmed that SMAD7 is a direct target of miR-21 using a dual luciferase assay. Furthermore, Immunofluorescence and Western blot analyses revealed that miR-21 inhibition reduced SMAD2/3 phosphorylation and nuclear translocation. While SMAD7-siRNA abolished the effect. Consequently, the discovery that miR-21 regulates the atrophy and fibrosis of the gastrocnemius muscle offers a possible therapeutic approach for their management.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11254527PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e33062DOI Listing

Publication Analysis

Top Keywords

atrophy fibrosis
24
gastrocnemius muscle
20
muscle atrophy
12
muscle
11
mir-21
9
mir-21 regulates
8
skeletal muscle
8
fibrosis
8
signaling pathway
8
muscle tissue
8

Similar Publications

Astragali Radix-Notoginseng Radix et Rhizoma medicine pair prevents cardiac remodeling by improving mitochondrial dynamic balance.

Chin J Nat Med

January 2025

Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China. Electronic address:

Astragali Radix (AR) and Notoginseng Radix et Rhizoma (NR) are frequently employed in cardiovascular disease treatment. However, the efficacy of the AR-NR medicine pair (AN) in improving cardiac remodeling and its underlying mechanism remains unclear. This study aimed to evaluate AN's cardioprotective effect and potential mechanism on cardiac remodeling using transverse aortic constriction (TAC) in mice and angiotensin II (Ang II)-induced neonatal rat cardiomyocytes (NRCMs) and fibroblasts in vitro.

View Article and Find Full Text PDF

Objectives: To develop and validate an ultrasomics-based machine-learning (ML) model for non-invasive assessment of interstitial fibrosis and tubular atrophy (IF/TA) in patients with IgA nephropathy (IgAN).

Materials And Methods: In this multi-center retrospective study, 471 patients with primary IgA nephropathy from four institutions were included (training, n = 275; internal testing, n = 69; external testing, n = 127; respectively). The least absolute shrinkage and selection operator logistic regression with tenfold cross-validation was used to identify the most relevant features.

View Article and Find Full Text PDF

Epithelium-derived exosomal dipeptidyl peptidase-4 involved in arecoline-induced oral submucous fibrosis.

Biochim Biophys Acta Mol Basis Dis

January 2025

Department of Healthcare Administration, Asia University, 40454 Taichung, Taiwan. Electronic address:

Introduction: Dipeptidyl peptidase-4 is known to be involved in the progression of several fibrogenic diseases, but its association with oral submucous fibrosis remains unclear. This study aims to ascertain whether dipeptidyl peptidase-4 plays a role in the pathogenesis of arecoline-induced oral submucous fibrosis.

Methods: We assessed the expression of dipeptidyl peptidase-4 in arecoline-treated epithelial cells and the exosomes derived from cells.

View Article and Find Full Text PDF

Treatment of Denervated Muscle Atrophy by Injectable Dual-Responsive Hydrogels Loaded with Extracellular Vesicles.

Adv Sci (Weinh)

January 2025

Department of Orthopedics, Shanghai Tenth People's Hospital School of Medicine, Tongji University, Shanghai, 200072, China.

Denervated muscle atrophy, a common outcome of nerve injury, often results in irreversible fibrosis due to the limited effectiveness of current therapeutic interventions. While extracellular vesicles (EVs) offer promise for treating muscle atrophy, their therapeutic potential is hindered by challenges in delivery and bioactivity within the complex microenvironment of the injury site. To address this issue, an injectable hydrogel is developed that is responsive to both ultrasound and pH, with inherent anti-inflammatory and antioxidant properties, designed to improve the targeted delivery of stem cell-derived EVs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!