Fenofibrate-promoted hepatomegaly and liver regeneration are PPAR-dependent and partially related to the YAP pathway.

Acta Pharm Sin B

NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.

Published: July 2024

Fenofibrate, a peroxisome proliferator-activated receptor (PPAR) agonist, is widely prescribed for hyperlipidemia management. Recent studies also showed that it has therapeutic potential in various liver diseases. However, its effects on hepatomegaly and liver regeneration and the involved mechanisms remain unclear. Here, the study showed that fenofibrate significantly promoted liver enlargement and regeneration post-partial hepatectomy in mice, which was dependent on hepatocyte-expressed PPAR. Yes-associated protein (YAP) is pivotal in manipulating liver growth and regeneration. We further identified that fenofibrate activated YAP signaling by suppressing its K48-linked ubiquitination, promoting its K63-linked ubiquitination, and enhancing the interaction and transcriptional activity of the YAP-TEAD complex. Pharmacological inhibition of YAP-TEAD interaction using verteporfin or suppression of YAP using AAV shRNA in mice significantly attenuated fenofibrate-induced hepatomegaly. Other factors, such as MYC, KRT23, RAS, and RHOA, might also participate in fenofibrate-promoted hepatomegaly and liver regeneration. These studies demonstrate that fenofibrate-promoted liver enlargement and regeneration are PPAR-dependent and partially through activating the YAP signaling, with clinical implications of fenofibrate as a novel therapeutic agent for promoting liver regeneration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11252459PMC
http://dx.doi.org/10.1016/j.apsb.2024.03.030DOI Listing

Publication Analysis

Top Keywords

liver regeneration
16
hepatomegaly liver
12
fenofibrate-promoted hepatomegaly
8
liver
8
regeneration ppar-dependent
8
ppar-dependent partially
8
yap signaling
8
regeneration
7
yap
5
partially yap
4

Similar Publications

Donor MHC-specific thymus vaccination allows for immunocompatible allotransplantation.

Cell Res

January 2025

Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.

Organ transplantation is the last-resort option to treat organ failure. However, less than 10% of patients benefit from this only option due to lack of major histocompatibility complex (MHC)-matched donor organs and 25%-80% of donated organs could not find MHC-matched recipients. T cell allorecognition is the principal mechanism for allogeneic graft rejection.

View Article and Find Full Text PDF

Diacylglycerol kinases (DGKs) phosphorylate diacylglycerol to generate phosphatidic acid, which plays important roles in intracellular signal transduction. DGKα is reportedly associated with progression of tumors, including hepatocellular carcinomas, but its relationship with liver regeneration has not been examined. The purpose of this research is to elucidate the role of DGKα in liver regeneration.

View Article and Find Full Text PDF

Feline Idiopathic Cystitis (FIC), is a chronic lower urinary tract condition in cats analogous to PBS/IC in women, which presents significant treatment challenges due to its idiopathic nature. Recent advancements in regenerative medicine highlight the potential of Adipose Tissue-Derived Stem Cells (ADSCs), particularly through their secretome, which includes mediators, bioactive molecules, and extracellular vesicles (EVs). Notably, exosomes, a subset of EVs, facilitate cell-to-cell communication and, when derived from ADSCs, exhibit anti-inflammatory properties and contribute to tissue regeneration.

View Article and Find Full Text PDF

The NOD-like receptor protein 3 (NLRP3) inflammasome plays a crucial role in human acute and chronic liver diseases. However, the role and cell-specific contribution of NLRP3 in liver regeneration remains unclear. Here, we found that NLRP3 was highly activated during the early stage of liver regeneration via 70% partial hepatectomy (PHx) mice model and clinical data.

View Article and Find Full Text PDF

Hepatocyte nuclear factor 4-α is necessary for high fat diet-induced pancreatic β-cell mass expansion and metabolic compensations.

Front Endocrinol (Lausanne)

January 2025

Islet Biology and Metabolism Lab - IBM Lab, Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina - UFSC, Florianópolis, Santa Catarina, Brazil.

Aims: This study investigates the role of Hepatocyte Nuclear Factor 4α (HNF4α) in the adaptation of pancreatic β-cells to an HFD-induced obesogenic environment, focusing on β cell mass expansion and metabolic adaptations.

Main Methods: We utilized an HNF4α knockout (KO) mouse model, with CRE-recombinase enzyme activation confirmed through tamoxifen administration. KO and Control (CTL) mice were fed an HFD for 20 weeks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!