Application of 4D printing in dentistry: A narrative review.

J Adv Periodontol Implant Dent

Division of Orthodontics and Dentofacial Deformities, Centre for Dental Education and Research, All India Institute of Medical Sciences, New Delhi, India.

Published: March 2024

4D printing is an innovative digital manufacturing technology that originated by adding a fourth dimension, i.e., time, to pre-existing 3D technology or additive manufacturing (AM). AM is a fast-growing technology used in many fields, which develops accurate 3D objects based on models designed by computers. Dentistry is one such field in which 3D technology is used for manufacturing objects in periodontics (scaffolds, local drug-delivering agents, augmentation of ridges), implants, prosthodontics (partial and complete dentures, obturators), oral surgery for reconstructing jaw, and orthodontics. Dynamism is a vital property needed for the survival of materials used in the oral cavity since the oral cavity is constantly subjected to various insults. 4D printing technology has overcome the disadvantages of 3D printing technology, i.e., it cannot create dynamic objects. Therefore, constant knowledge of 4D technology is required. 3D printing technology has shortcomings, which are discussed in this review. This review summaries various printing technologies, materials used, stimuli, and potential applications of 4D technology in dentistry.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11252150PMC
http://dx.doi.org/10.34172/japid.2024.003DOI Listing

Publication Analysis

Top Keywords

printing technology
12
technology
9
oral cavity
8
printing
5
application printing
4
printing dentistry
4
dentistry narrative
4
narrative review
4
review printing
4
printing innovative
4

Similar Publications

Biochips are widely applied to manipulate the geometrical morphology of stem cells in recent years. Patterned antenna-like pseudopodia are also probed to explore the influence of pseudopodia formation on gene delivery and expression on biochips. However, how the antenna-like pseudopodia affect gene transfection is unsettled and the underlying trafficking mechanism of exogenous genes in engineered single cells is not announced.

View Article and Find Full Text PDF

Objectives: The aim of this systematic review and network meta-analysis was to compare the flexural strength of provisional fixed dental prostheses (PFDPs) fabricated using different 3D printing technologies, including digital light processing (DLP), stereolithography (SLA), liquid crystal display (LCD), selective laser sintering (SLS), Digital Light Synthesis (DLS), and fused deposition modeling (FDM).

Materials And Methods: A comprehensive literature search was conducted in databases including PubMed, Web of Science, Scopus, and Open Grey up to September 2024. Studies evaluating the flexural strength of PFDPs fabricated by 3D printing systems were included.

View Article and Find Full Text PDF

This study advances microfluidic probe (MFP) technology through the development of a 3D-printed Microfluidic Mixing Probe (MMP), which integrates a built-in pre-mixer network of channels and features a lined array of paired injection and aspiration apertures. By combining the concepts of hydrodynamic flow confinements (HFCs) and "Christmas-tree" concentration gradient generation, the MMP can produce multiple concentration-varying flow dipoles, ranging from 0 to 100%, within an open microfluidic environment. This innovation overcomes previous limitations of MFPs, which only produced homogeneous bioreagents, by utilizing the pre-mixer to create distinct concentration of injected biochemicals.

View Article and Find Full Text PDF

Purpose: The purpose of this research was to develop and characterize dual-drug Isoniazid-Pyridoxine gummies using Semisolid Extrusion (SSE) 3D printing technology, aimed at personalized dosing for a broad patient demographic, from pediatric to geriatric. This study leverages SSE 3D printing, an innovative approach in personalized medicine, to enable precise dose customization and improve patient adherence. By formulating dual drug-loaded gummies, the research addresses the challenges of pill burden and poor palatability associated with traditional tuberculosis regimens, ultimately enhancing the therapeutic experience and effectiveness for patients across various age groups.

View Article and Find Full Text PDF

Organic solar cells with 20.82% efficiency and high tolerance of active layer thickness through crystallization sequence manipulation.

Nat Mater

January 2025

Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China.

Printing of large-area solar panels necessitates advanced organic solar cells with thick active layers. However, increasing the active layer thickness typically leads to a marked drop in the power conversion efficiency. Here we developed an organic semiconductor regulator, called AT-β2O, to tune the crystallization sequence of the components in active layers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!