A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Advancing membrane-associated protein docking with improved sampling and scoring in Rosetta. | LitMetric

The oligomerization of protein macromolecules on cell membranes plays a fundamental role in regulating cellular function. From modulating signal transduction to directing immune response, membrane proteins (MPs) play a crucial role in biological processes and are often the target of many pharmaceutical drugs. Despite their biological relevance, the challenges in experimental determination have hampered the structural availability of membrane proteins and their complexes. Computational docking provides a promising alternative to model membrane protein complex structures. Here, we present Rosetta-MPDock, a flexible transmembrane (TM) protein docking protocol that captures binding-induced conformational changes. Rosetta-MPDock samples large conformational ensembles of flexible monomers and docks them within an implicit membrane environment. We benchmarked this method on 29 TM-protein complexes of variable backbone flexibility. These complexes are classified based on the root-mean-square deviation between the unbound and bound states (RMSD) as: rigid (RMSD <1.2 Å), moderately-flexible (RMSD ∈ [1.2, 2.2) Å), and flexible targets (RMSD > 2.2 Å). In a local docking scenario, i.e. with membrane protein partners starting ≈10 Å apart embedded in the membrane in their unbound conformations, Rosetta-MPDock successfully predicts the correct interface (success defined as achieving 3 near-native structures in the 5 top-ranked models) for 67% moderately flexible targets and 60% of the highly flexible targets, a substantial improvement from the existing membrane protein docking methods. Further, by integrating AlphaFold2-multimer for structure determination and using Rosetta-MPDock for docking and refinement, we demonstrate improved success rates over the benchmark targets from 64% to 73%. Rosetta-MPDock advances the capabilities for membrane protein complex structure prediction and modeling to tackle key biological questions and elucidate functional mechanisms in the membrane environment. The benchmark set and the code is available for public use at github.com/Graylab/MPDock.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11257521PMC
http://dx.doi.org/10.1101/2024.07.09.602802DOI Listing

Publication Analysis

Top Keywords

membrane protein
16
protein docking
12
membrane
9
membrane proteins
8
protein complex
8
membrane environment
8
flexible targets
8
protein
7
docking
6
rosetta-mpdock
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!