Unlabelled: Tendinopathies are prevalent musculoskeletal conditions that have no effective therapies to attenuate scar formation. In contrast to other adult mammals, the tendons of Murphy Roths Large (MRL/MpJ) mice possess a superior healing capacity following acute and overuse injuries. Here, we hypothesized that the application of biological cues derived from the local MRL/MpJ tendon environment would direct otherwise scar-mediated tenocytes towards a pro-regenerative MRL/MpJ-like phenotype. We identified soluble factors enriched in the secretome of MRL/MpJ tenocytes using bioreactor systems and quantitative proteomics. We then demonstrated that the combined administration of structural and soluble constituents isolated from decellularized MRL/MpJ tendon provisional ECM (dPECM) and the secretome stimulate scar-mediated rodent tenocytes towards enhanced mechanosensitivity, proliferation, intercellular communication, and ECM deposition associated with MRL/MpJ cell behavior. Our findings highlight key biological mechanisms that drive MRL/MpJ tenocyte activity and their interspecies utility to be harnessed for therapeutic strategies that promote pro-regenerative healing outcomes.
Teaser: Proteins enriched in a super-healer mouse strain elicit interspecies utility in promoting pro-regenerative tenocyte behavior.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11257490 | PMC |
http://dx.doi.org/10.1101/2024.07.08.602500 | DOI Listing |
Unlabelled: Tendinopathies are prevalent musculoskeletal conditions that have no effective therapies to attenuate scar formation. In contrast to other adult mammals, the tendons of Murphy Roths Large (MRL/MpJ) mice possess a superior healing capacity following acute and overuse injuries. Here, we hypothesized that the application of biological cues derived from the local MRL/MpJ tendon environment would direct otherwise scar-mediated tenocytes towards a pro-regenerative MRL/MpJ-like phenotype.
View Article and Find Full Text PDFJ Orthop Res
October 2023
Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, USA.
Clinical and animal studies have reported the influence of sex on the incidence and progression of tendinopathy, which results in disparate structural and biomechanical outcomes. However, there remains a paucity in our understanding of the sex-specific biological mechanisms underlying effective tendon healing. To overcome this hurdle, our group has investigated the impact of sex on tendon regeneration using the super-healer Murphy Roths Large (MRL/MpJ) mouse strain.
View Article and Find Full Text PDFJ Orthop Res
October 2023
Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA.
While most mammalian tissue regeneration is limited, the Murphy Roths Large (MRL/MpJ) mouse has been identified to regenerate several tissues, including tendon. Recent studies have indicated that this regenerative response is innate to the tendon tissue and not reliant on a systemic inflammatory response. Therefore, we hypothesized that MRL/MpJ mice may also exhibit a more robust homeostatic regulation of tendon structure in response to mechanical loading.
View Article and Find Full Text PDFJ Shoulder Elbow Surg
December 2022
Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA; Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA; Hospital for Special Surgery, New York, NY, USA. Electronic address:
Background: Surgical repair of supraspinatus tendons (SSTs) has a high failure rate at the insertion site. A significant hurdle to therapeutic development is that effective intrinsic healing mechanisms are unknown. The MRL/MpJ (MRL) mouse exhibits tissue-specific enhanced healing; however, these tissues exhibit disparate properties from the complex SST.
View Article and Find Full Text PDFSci Rep
February 2022
Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!