Myosin 2 dynamically assembles into filaments that exert force on the actin cytoskeleton. To form filaments, myosin 2 monomers transition between folded and unfolded states. Monomer unfolding exposes an extended coiled-coil that interacts with other monomers in parallel and antiparallel fashions, enabling bipolar filament formation. A C-terminal domain of the coiled-coil, termed assembly competence domain (ACD), has been repeatedly identified as necessary for filament assembly. Here, we revisit ACD contribution when full-length filaments are present. Non-muscle myosin 2A lacking the ACD (ΔACD) initially appears diffuse, but triton extraction of cytosolic fraction reveals cytoskeletal association. Disruption of the folded monomer enhances the cytoskeletal fraction, while inhibition of endogenous filament assembly appears to reduce it. Finally, high resolution imaging of endogenous and exogenous bipolar filamentous structures reveals highly coincident signal, suggesting ΔACD constructs co-assemble with endogenous myosin 2A filaments. Our data demonstrate that while the ACD is required for de novo filament assembly, it is not required for monomers to recognize and associate with established filaments in cells. More broadly, this highlights the existence of distinct mechanisms governing myosin 2 monomer assembly into nascent filaments, and monomer recognition and association with established filaments to maintain steady-state contractile networks.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11257479 | PMC |
http://dx.doi.org/10.1101/2024.07.07.602405 | DOI Listing |
Nat Prod Bioprospect
January 2025
Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
Anchusa italica Retz. (AIR), a traditional herbal remedy, is commonly applied in managing heart and brain disorders. However, its specific function and mechanism in acute cerebral ischemia-reperfusion injury (CIRI) are not fully understood.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea.
Cortactin (CTTN) is an actin-binding protein regulating actin polymerization and stabilization, which are vital processes for maintaining skeletal muscle homeostasis. Despite the established function of CTTN in actin cytoskeletal dynamics, its role in the myogenic differentiation of progenitor cells remains largely unexplored. In this study, we investigated the role of CTTN in the myogenic differentiation of C2C12 myoblasts by analyzing its effects on actin cytoskeletal remodeling, myocardin-related transcription factor A (MRTFA) nuclear translocation, serum response factor (SRF) activation, expression of myogenic transcription factors, and myotube formation.
View Article and Find Full Text PDFCurr Opin Cell Biol
January 2025
Departments of Physics, Cell Biology and Biochemistry, Emory University, Atlanta, GA 30322, USA. Electronic address:
Twinfilin is an evolutionarily conserved actin-binding protein initially mischaracterized as a tyrosine kinase but later recognized as a key regulator of cellular actin dynamics. As a member of the ADF-H family, twinfilin binds both actin monomers and filaments. Its role in sequestering G-actin is well-established, but its effects on actin filaments have been debated.
View Article and Find Full Text PDFNanoscale
January 2025
School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
CsCuI is considered a promising material for lead-free resistive switching (RS) memory devices due to its low operating voltage, high on/off ratio, and excellent thermal and environmental stability. However, conventional lead-free halide-based RS memory devices typically require solvent-based thin-film formation processes that involve toxic organic and acidic solvents, and the effects of process conditions on device performance are often not fully understood. This study investigates the effect of crystallinity on CsCuI-based RS memory devices fabricated thermal evaporation.
View Article and Find Full Text PDFZool Res
January 2025
Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea. E-mail:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!