Aberrant high-density lipoprotein (HDL) function is implicated in inflammation-associated pathologies. While HDL ABCA1-mediated reverse cholesterol and phospholipid transport are well described, the movement of pro-/anti-inflammatory lipids has not been explored. HDL phospholipids are the largest reservoir of circulating arachidonic acid-derived oxylipins. Endotoxin-stimulation activates inflammatory cells leading to hydroxyeicosatetraenoic acid (HETE) production, oxylipins which are involved in inflammatory response coordination. Active signaling in the non-esterified (NE) pool is terminated by sequestration of HETEs as esterified (Es) forms and degradation. We speculate that an ABCA1-apoA-I-dependent efflux of HETEs from stimulated cells could regulate intracellular HETE availability. Here we test this hypothesis both in vitro and in vivo. In endotoxin-stimulated RAW-264.7 macrophages preloaded with d8-arachidonic acid we use compartmental tracer modeling to characterize the formation of HETEs, and their efflux into HDL. We found that in response to endotoxin: I) Cellular NE 12-HETE is positively associated with MCP-1 secretion (p<0.001); II) HETE transfer from NE to Es pools is ABCA1-depedent (p<0.001); III) Cellular Es HETEs are transported into media when both apoA-I and ABCA1 are present (p<0.001); IV) The stimulated efflux of HETEs >> arachidonate (p<0.001). Finally, in endotoxin challenged humans (n=17), we demonstrate that intravenous lipopolysaccharide (0.6 ng/kg body weight) resulted in accumulation of 12-HETE in HDL over a 168-hour follow-up. Therefore, HDL can suppress inflammatory responses in macrophages by regulating intracellular HETE content in an apoA-I/ABCA1 dependent manner. The described mechanism may apply to other oxylipins and explain anti-inflammatory properties of HDL. This newly defined HDL property opens new doors for the study of lipoprotein interactions in metabolic diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11257534PMC
http://dx.doi.org/10.1101/2024.07.11.603001DOI Listing

Publication Analysis

Top Keywords

abca1 apoa-i
4
apoa-i dependent
4
dependent 12-hydroxyeicosatetraenoic
4
12-hydroxyeicosatetraenoic acid
4
acid efflux
4
efflux regulates
4
regulates macrophage
4
macrophage inflammatory
4
inflammatory signaling
4
signaling aberrant
4

Similar Publications

Apolipoprotein A-I (ApoA-I), the primary component of high-density lipoprotein (HDL) cholesterol primes β-cells to increase insulin secretion, however, the mechanisms involved are not fully defined. Here, we aimed to confirm ApoA-I receptors in β-cells and delineate ApoA-I-receptor pathways in β-cell insulin output. An LRC-TriCEPS experiment was performed using the INS-1E rat β-cell model and ApoA-I for unbiased identification of ApoA-I receptors.

View Article and Find Full Text PDF

APOA2 increases cholesterol efflux capacity to plasma HDL by displacing the C-terminus of resident APOA1.

J Lipid Res

December 2024

Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA; Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA; Department of Neurology, Oregon Health and Science University, Portland, OR, USA. Electronic address:

The ability of high-density lipoprotein (HDL) to promote cellular cholesterol efflux is a more robust predictor of cardiovascular disease protection than HDL-cholesterol levels in plasma. Previously, we found that lipidated HDL containing both apolipoprotein A-I (APOA1) and A-II (APOA2) promotes cholesterol efflux via the ATP-binding cassette transporter (ABCA1). In the current study, we directly added purified, lipid-free APOA2 to human plasma and found a dose-dependent increase in whole plasma cholesterol efflux capacity.

View Article and Find Full Text PDF

Chronic Real-Ambient PM Exposure Exacerbates Cardiovascular Risk via Amplifying Liver Injury in Mice Fed with a High-Fat and High-Cholesterol Diet.

Environ Health (Wash)

April 2024

State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR 000000, China.

Epidemiology has associated fine particulate matter (PM) exposure with an increased cardiovascular risk. However, the underlying mechanism, particularly from the liver perspective, remains unclear. Here, the influence of chronic PM exposure on cardiovascular risk in mice fed a high-fat and high-cholesterol diet (HFCD) was studied by using a real-world PM exposure system.

View Article and Find Full Text PDF

Purpose Of Review: Doubts about whether high-density lipoprotein-cholesterol (HDL-C) levels are causally related to atherosclerotic cardiovascular disease (CVD) risk have stimulated research on identifying HDL-related metrics that might better reflect its cardioprotective functions. HDL is made up of different types of particles that vary in size, protein and lipid composition, and function. This review focuses on recent findings on the specific roles of HDL subpopulations defined by size in CVD.

View Article and Find Full Text PDF

Background And Aims: The structure-function relationships of high-density lipoprotein (HDL) subpopulations are not well understood. Our aim was to examine the interrelationships between HDL particle proteome and HDL functionality in subjects with and without coronary heart disease (CHD).

Methods: We isolated 5 different HDL subpopulations based on charge, size, and apolipoprotein A1 (APOA1) content from the plasma of 33 overweight/obese CHD patients and 33 age-and body mass index (BMI)-matched CHD-free subjects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!