Lipid metabolism is fundamental to CD4+ T cell metabolism yet remains poorly understood across subsets. Therefore, we performed targeted in vivo CRISPR/Cas9 screens to identify lipid-associated genes essential for T cell subset functions. These screens established mitochondrial fatty acid synthesis (mtFAS) genes Mecr, Mcat and Oxsm as highly impactful. Of these, the inborn error of metabolism gene Mecr was most dynamically regulated. Effector and memory T cells were reduced in Mecrfl/fl; Cd4cre mice, and MECR was required for activated CD4+ T cells to efficiently proliferate, differentiate, and survive. Mecr-deficient T cells also had decreased mitochondrial respiration, reduced TCA intermediates, and accumulated intracellular iron, which contributed to cell death and sensitivity to ferroptosis. Importantly, Mecr-deficient T cells exhibited fitness disadvantages in inflammatory, tumor, and infection models. mtFAS and MECR thus play important roles in activated T cells and may provide targets to modulate immune functions in inflammatory diseases. The immunological state of MECR- and mtFAS-deficient patients may also be compromised.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11257487PMC
http://dx.doi.org/10.1101/2024.07.08.602554DOI Listing

Publication Analysis

Top Keywords

mitochondrial fatty
8
fatty acid
8
acid synthesis
8
cd4+ cell
8
mecr-deficient cells
8
mecr
5
cells
5
synthesis mecr
4
mecr regulate
4
regulate cd4+
4

Similar Publications

FADS1 inhibition protects retinal pigment epithelium cells from ferroptosis in age related macular degeneration.

Eur J Pharmacol

December 2024

Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China. Electronic address:

Purpose: Age-related macular degeneration (AMD) is the leading cause of vision loss among the elderly individuals. Retinal pigment epithelium (RPE) ferroptosis is a significant pathogenetic component in AMD. This study aims to elucidate the role and mechanisms of fatty acid desaturase 1 (FADS1) in ferroptosis as well as AMD progression.

View Article and Find Full Text PDF

Integrated hepatic transcriptomics and metabolomics identify Pck1 as a key factor in the broad dysregulation induced by vehicle pollutants.

Part Fibre Toxicol

December 2024

Division of Cardiology, David Geffen School of Medicine, University of California-Los Angeles, 10833 Le Conte Avenue, CHS 43-264, P.O. Box 951679, Los Angeles, CA, 90095, USA.

Background: Exposure to air pollution is associated with worldwide morbidity and mortality. Diesel exhaust (DE) emissions are important contributors which induce vascular inflammation and metabolic disturbances by unknown mechanisms. We aimed to determine molecular pathways activated by DE in the liver that could be responsible for its cardiometabolic toxicity.

View Article and Find Full Text PDF

Perfluorodecanoic acid (PFDA) increases oxidative stress through inhibition of mitochondrial β-oxidation.

Environ Pollut

December 2024

Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria; Exposome Austria, Research Infrastructure and National EIRENE Hub, Austria.

PER: and polyfluoroalkyl substances (PFAS) are a large group of synthetic organic chemicals that are ubiquitous environmental pollutants. Among PFAS, perfluorodecanoic acid (PFDA) is one of the most toxic compounds, but the molecular basis behind its toxicity is not fully understood. In an interspecies comparison with placental cells (HTR-8/SVneo) and zebrafish embryos, we demonstrate that PFDA induces mitochondrial dysfunction and impairs fatty acid β-oxidation.

View Article and Find Full Text PDF

Cytoplasmic proliferating cell nuclear antigen (PCNA) is highly expressed in acute myeloid leukemia (AML) cells, supporting oxidative metabolism and leukemia stem cell (LSC) growth. We report on AOH1996 (AOH), an oral compound targeting cancer-associated PCNA, which shows significant antileukemic activity. AOH inhibited growth in AML cell lines and primary CD34 + CD38 - blasts (LSC-enriched) in vitro while sparing normal hematopoietic stem cells (HSCs).

View Article and Find Full Text PDF

Loss-of-function SLC25A20 mutation causes carnitine-acylcarnitine translocase deficiency by reducing SLC25A20 protein stability.

Gene

December 2024

Department of Medical Genetics/Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou 510515, China; Department of Fetal Medicine and Prenatal Diagnosis, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China. Electronic address:

Background/aim: Autosomal-recessive carnitine-acylcarnitine translocase deficiency (CACTD) is a rare disorder of long-chain fatty acid oxidation caused by variants in the SLC25A20 gene. Under fasting conditions, most newborns with severe CACTD experience sudden cardiac arrest and hypotonia, often leading to premature death due to rapid disease progression. Understanding of genetic factors and pathogenic mechanisms in CACTD is essential for its diagnosis, treatment, and prevention.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!