Given the mounting evidence implicating TDP-43 dysfunction in several neurodegenerative diseases, there is a pressing need to establish accessible tools to sense and quantify TDP-43 loss-of-function (LOF). These tools are crucial for assessing potential disease contributors and exploring therapeutic candidates in TDP-43 proteinopathies. Here, we develop a sensitive and accurate real-time sensor for TDP-43 LOF: the CUTS (CFTR UNC13A TDP-43 Loss-of-Function) system. This system combines previously reported cryptic exons regulated by TDP-43 with a reporter, enabling the tracking of TDP-43 LOF through live microscopy and RNA/protein-based assays. We demonstrate CUTS' effectiveness in detecting LOF caused by TDP-43 mislocalization and RNA binding dysfunction, and pathological aggregation. Our results highlight the sensitivity and accuracy of the CUTS system in detecting and quantifying TDP-43 LOF, opening avenues to explore unknown TDP-43 interactions that regulate its function. In addition, by replacing the fluorescent tag in the CUTS system with the coding sequence for TDP-43, we show significant recovery of its function under TDP-43 LOF conditions, highlighting CUTS' potential for self-regulating gene therapy applications. In summary, CUTS represents a versatile platform for evaluating TDP-43 LOF in real-time and advancing gene-replacement therapies in neurodegenerative diseases associated with TDP-43 dysfunction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11257528PMC
http://dx.doi.org/10.1101/2024.07.12.603231DOI Listing

Publication Analysis

Top Keywords

tdp-43 lof
20
tdp-43
15
tdp-43 loss-of-function
12
tdp-43 dysfunction
8
neurodegenerative diseases
8
cuts system
8
lof
7
cuts
5
cuts rna
4
rna biosensor
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!