Microsporidia are divergent fungal pathogens that employ a harpoon-like apparatus called the polar tube (PT) to invade host cells. The PT architecture and its association with neighboring organelles remain poorly understood. Here, we use cryo-electron tomography to investigate the structural cell biology of the PT in dormant spores from the human-infecting microsporidian species, . Segmentation and subtomogram averaging of the PT reveal at least four layers: two protein-based layers surrounded by a membrane, and filled with a dense core. Regularly spaced protein filaments form the structural skeleton of the PT. Combining cryo-electron tomography with cellular modeling, we propose a model for the 3-dimensional organization of the polaroplast, an organelle that is continuous with the membrane layer that envelops the PT. Our results reveal the ultrastructure of the microsporidian invasion apparatus , laying the foundation for understanding infection mechanisms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11257570PMC
http://dx.doi.org/10.1101/2024.07.13.603322DOI Listing

Publication Analysis

Top Keywords

polar tube
8
invasion apparatus
8
cryo-electron tomography
8
cryo-et reveals
4
reveals architecture
4
architecture polar
4
tube invasion
4
apparatus microsporidian
4
microsporidian parasites
4
parasites microsporidia
4

Similar Publications

Vangl is a planar cell polarity (PCP) core protein essential for aligned cell orientation along the epithelial plane perpendicular to the apical-basal direction, which is important for tissue morphogenesis, development and collective cell behavior. Mutations in Vangl are associated with developmental defects, including neural tube defects (NTDs), according to human cohort studies of sporadic and familial cases. The complex mechanisms underlying Vangl-mediated PCP signaling or Vangl-associated human congenital diseases have been hampered by the lack of molecular characterizations of Vangl.

View Article and Find Full Text PDF

Regulation of the immune response is key to promoting bone regeneration by electroactive biomaterials. However, how electrical signals at the micro- and nanoscale regulate the immune response and subsequent angiogenesis during bone regeneration remains to be elucidated. Here, the distinctly different surface potential distributions on charged poly(vinylidene fluoridetrifluoroethylene) (P(VDF-TrFE)) matrix surfaces are established by altering the dimensions of ferroelectric nanofillers from 0D BaTiO nanoparticles (homogeneous surface potential distribution, HOPD) to 1D BaTiO nanofibers (heterogeneous surface potential distribution, HEPD).

View Article and Find Full Text PDF

Rationale: Data are required for SIFT-MS analysis of perfluoroalkyl and polyfluoroalkyl substances (PFAS), which are persistent in the environment and cause adverse health effects. Specifically, the rate coefficients and product ion branching ratios of the reactions of HO, NO, O •, O•, OH, O •, NO and NO with PFAS vapours are needed.

Methods: The dual polarity SIFT-MS instrument (Voice200) was used to generate these eight reagent ions and inject them into the flow tube with N carrier gas at a temperature of 393 K.

View Article and Find Full Text PDF

Gelatin methacryloyl hydrogel encapsulating molybdenum-inspired macrophage-derived exosomes accelerates wound healing via immune regulation and angiogenesis.

Int J Biol Macromol

December 2024

State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China. Electronic address:

Clinically, abnormal or delayed wound healing leads to functional disorders and disfiguring scars. A well-vascularized environment and an anti-inflammatory immune state are crucial during the healing process. Molybdenum (Mo) is an essential element for the human body in modulating metabolism, immune function and tissue repair.

View Article and Find Full Text PDF

Sediment reworking by benthic infauna, namely bioturbation, is of pivotal importance in expansive soft-sediment environments such as the Wadden Sea. Bioturbating fauna facilitate ecosystem functions such as bentho-pelagic coupling and sediment nutrient remineralization capacities. Yet, these benthic fauna are expected to be profoundly affected by current observed rising sea temperatures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!