A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

An MITF- and mTOR-dependent FLCN pathway suppresses TFE3-driven metastasis in melanoma. | LitMetric

Cancer cells have remarkable plasticity allowing them to acquire many biological states. Melanoma cells have the ability to switch from a proliferative melanocytic state to an invasive mesenchymal state and back again resulting in intratumoral heterogeneity. While microphthalmia-associated transcription factor (MITF) promotes the melanocytic phenotype, it is unclear what transcription factors drive the mesenchymal phenotype, and what mechanisms regulate the switch from the proliferative state to the mesenchymal state. We show that nuclear localization of the MITF paralog TFE3 correlates positively with metastatic potential in melanoma cell lines and tumors, and that deletion of in MITF-low melanoma cell lines eliminates migration and metastatic ability. Further, we find that MITF suppresses the mesenchymal phenotype by activating expression of , which encodes a component of an mTORC1-stimulated pathway promoting cytoplasmic retention and lysosomal degradation of TFE3. These findings point to the mTOR pathway and TFE3 as key regulators of melanoma plasticity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11257520PMC
http://dx.doi.org/10.1101/2024.07.11.603140DOI Listing

Publication Analysis

Top Keywords

switch proliferative
8
mesenchymal state
8
mesenchymal phenotype
8
melanoma cell
8
cell lines
8
melanoma
5
mitf- mtor-dependent
4
mtor-dependent flcn
4
flcn pathway
4
pathway suppresses
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!