A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Fluorogenic Aptamer Optimizations on a Massively Parallel Sequencing Platform. | LitMetric

F luorogenic ap tamers (FAPs) have become an increasingly important tool in cellular sensing and pathogen diagnostics. However, fine-tuning FAPs for enhanced performance remains challenging even with the structural details provided by X-ray crystallography. Here we present a novel approach to optimize a DNA-based FAP (D-FAP), Lettuce, on repurposed Illumina next-generation sequencing (NGS) chips. When substituting its cognate chromophore, DFHBI-1T, with TO1-biotin, Lettuce not only shows a red-shifted emission peak by 53 nm (from 505 to 558 nm), but also a 4-fold bulk fluorescence enhancement. After screening 8,821 Lettuce variants complexed with TO1-biotin, the C14T mutation is found to exhibit an improved apparent dissociated constant ( vs. 0.82 µM), an increased quantum yield (QY: 0.62 vs. 0.59) and an elongated fluorescence lifetime (τ: 6.00 vs. 5.77 ns), giving 45% more ensemble fluorescence than the canonical Lettuce/TO1-biotin complex. Molecular dynamic simulations further indicate that the π-π stacking interaction is key to determining the coordination structure of TO1-biotin in Lettuce. Our screening-and-simulation pipeline can effectively optimize FAPs without any prior structural knowledge of the canonical FAP/chromophore complexes, providing not only improved molecular probes for fluorescence sensing but also insights into aptamer-chromophore interactions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11257435PMC
http://dx.doi.org/10.1101/2024.07.07.602435DOI Listing

Publication Analysis

Top Keywords

to1-biotin lettuce
8
fluorogenic aptamer
4
aptamer optimizations
4
optimizations massively
4
massively parallel
4
parallel sequencing
4
sequencing platform
4
platform luorogenic
4
luorogenic tamers
4
tamers faps
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!