Investigating the gut microbiome and metabolome frequently requires faecal samples, which can be difficult to obtain. Previous studies have shown that rectal swabs are comparable to faecal samples for analysing gut microbiota composition and key metabolites. In this study, 3D printed rectal swabs were compared with conventional flocked swabs and faecal samples, due to the potential advantages 3D printing as a technique offers for swab production and development. 16S rRNA gene sequencing, qPCR and metabolite profiling (using H-NMR spectroscopy) were performed on swab and faecal samples from healthy participants. Faecal calprotectin and total protein analysis were performed on samples from inflammatory bowel disease (IBD) patients. There were no significant differences between both swab types and faecal samples when assessing key measures of alpha and beta diversity, and differences in the abundance of major phyla. There was a strong correlation between both swab types and faecal samples for all combined metabolites detected by NMR. In IBD patients, there was no significant difference in faecal calprotectin and total protein levels between both swab types and faecal samples. These data lead us to conclude that 3D printed swabs are equivalent to flocked swabs for the analysis of the gut microbiome, metabolome and inflammation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11258137PMC
http://dx.doi.org/10.1038/s41598-024-67457-0DOI Listing

Publication Analysis

Top Keywords

faecal samples
28
rectal swabs
12
gut microbiome
12
microbiome metabolome
12
swab types
12
types faecal
12
faecal
9
printed rectal
8
metabolome inflammation
8
samples
8

Similar Publications

Background/aim: This study evaluated the diagnostic accuracy (DA) for colorectal adenomas (CRA), screened by fecal immunochemical test (FIT), using five artificial intelligence (AI) models: logistic regression (LR), support vector machine (SVM), neural network (NN), random forest (RF), and gradient boosting machine (GBM). These models were tested together with clinical features categorized as low-risk (lowR) and high-risk (highR).

Patients And Methods: The colorectal neoplasia (CRN) screening cohort of 5,090 patients included 222 CRA patients and 264 non-CRA patients.

View Article and Find Full Text PDF

Background: Evaluate the impact of Spondias mombin L. juice (SM), alone and in combination with Lactobacillus acidophilus, in an experimental model of intestinal mucositis.

Methods: Swiss mice were orally administered with saline, SM, or SM combined with L.

View Article and Find Full Text PDF

Detection of Porcine Norovirus GII.18 Strains in Pigs Using Broadly Reactive RT-qPCR Assay for Genogroup II Noroviruses.

Food Environ Virol

December 2024

Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland.

Noroviruses, belonging to the family Caliciviridae, are classified into at least ten genogroups (G) based on their major capsid protein (VP1). The common genogroup to be identified in both humans and pigs is GII, although porcine noroviruses (PoNoVs) belong to genotypes of their own (GII.11, GII.

View Article and Find Full Text PDF

A single novel bacterial strain designated as H23M31 was isolated from the faecal sample of oriental stork (Ciconia boyciana) that inhabits the Republic of Korea. It was a rod-shaped, facultative anaerobic, Gram-negative, and non-motile strain. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that it branched from Aequorivita within Flavobacteriaceae.

View Article and Find Full Text PDF

Impact of land-use and fecal contamination on Escherichia populations in environmental samples.

Sci Rep

December 2024

Food System Integrity, AgResearch Limited, Hopkirk Research Institute, Massey University, Cnr University Avenue and Library Road, Private Bag 11008, Palmerston North, 4442, New Zealand.

Understanding the composition of complex Escherichia coli populations from the environment is necessary for identifying strategies to reduce the impacts of fecal contamination and protect public health. Metabarcoding targeting the hypervariable gene gnd was used to reveal the complex population diversity of E. coli and phenotypically indistinct Escherichia species in water, soil, sediment, aquatic biofilm, and fecal samples from native forest and pastoral sites.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!