A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Application of untargeted liquid chromatography-mass spectrometry to routine analysis of food using three-dimensional bucketing and machine learning. | LitMetric

For the detection of food adulteration, sensitive and reproducible analytical methods are required. Liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS) is a highly sensitive method that can be used to obtain analytical fingerprints consisting of a variety of different components. Since the comparability of measurements carried out with different devices and at different times is not given, specific adulterants are usually detected in targeted analyses instead of analyzing the entire fingerprint. However, this comprehensive analysis is desirable in order to stay ahead in the race against food fraudsters, who are constantly adapting their adulterations to the latest state of the art in analytics. We have developed and optimized an approach that enables the separate processing of untargeted LC‑HRMS data obtained from different devices and at different times. We demonstrate this by the successful determination of the geographical origin of honey samples using a random forest model. We then show that this approach can be applied to develop a continuously learning classification model and our final model, based on data from 835 samples, achieves a classification accuracy of 94% for 126 test samples from 6 different countries.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11258308PMC
http://dx.doi.org/10.1038/s41598-024-67459-yDOI Listing

Publication Analysis

Top Keywords

devices times
8
application untargeted
4
untargeted liquid
4
liquid chromatography-mass
4
chromatography-mass spectrometry
4
spectrometry routine
4
routine analysis
4
analysis food
4
food three-dimensional
4
three-dimensional bucketing
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!