ADCK3 is a member of the UbiB family of atypical protein kinases in humans, with homologues in archaea, bacteria, and eukaryotes. In lieu of protein kinase activity, ADCK3 plays a role in the biosynthesis of coenzyme Q10 (CoQ10), and inactivating mutations can cause a CoQ10 deficiency and ataxia. However, the exact functions of ADCK3 are still unclear, and small-molecule inhibitors could be useful as chemical probes to elucidate its molecular mechanisms. In this study, we applied structure-based virtual screening (VS) to discover a novel chemical series of ADCK3 inhibitors. Through extensive structural analysis of the active-site residues, we developed a pharmacophore model and applied it to a large-scale VS. Out of ∼170,000 compounds virtually screened, 800 top-ranking candidate compounds were selected and tested in both ADCK3 and p38 biochemical assays for hit validation. In total, 129 compounds were confirmed as ADCK3 inhibitors, and among them, 114 compounds are selective against p38, which was used as a counter-target. Molecular dynamics (MD) simulations were then conducted to predict the binding modes of the most potent compounds within the ADCK3 active site. Through metadynamics analysis, we successfully detected the key amino acid residues that govern intermolecular interactions. The findings provided in this study can serve as a promising starting point for drug development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jcim.4c00530 | DOI Listing |
Nat Immunol
January 2025
Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
Chimeric antigen receptor T cells (CAR T cells) with T stem (T) cell-like phenotypic characteristics promote sustained antitumor effects. We performed an unbiased and automated high-throughput screen of a kinase-focused compound set to identify kinase inhibitors (KIs) that preserve human T cell-like CAR T cells. We identified three KIs, UNC10225387B, UNC10225263A and UNC10112761A, that combined in vitro increased the frequency of CD45RACCR7TCF1 T cell-like CAR T cells from both healthy donors and patients with cancer.
View Article and Find Full Text PDFJ Chem Inf Model
August 2024
Early Translation Branch, Division of Preclinical Innovation, National Center for Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, Maryland 20850, United States.
ADCK3 is a member of the UbiB family of atypical protein kinases in humans, with homologues in archaea, bacteria, and eukaryotes. In lieu of protein kinase activity, ADCK3 plays a role in the biosynthesis of coenzyme Q10 (CoQ10), and inactivating mutations can cause a CoQ10 deficiency and ataxia. However, the exact functions of ADCK3 are still unclear, and small-molecule inhibitors could be useful as chemical probes to elucidate its molecular mechanisms.
View Article and Find Full Text PDFBiochim Biophys Acta
August 2016
Clinical Genetics Unit, Department of Woman and Child Health, University of Padova, and IRP Città della Speranza, Padova, Italy. Electronic address:
Coenzyme Q (CoQ, or ubiquinone) is a remarkable lipid that plays an essential role in mitochondria as an electron shuttle between complexes I and II of the respiratory chain, and complex III. It is also a cofactor of other dehydrogenases, a modulator of the permeability transition pore and an essential antioxidant. CoQ is synthesized in mitochondria by a set of at least 12 proteins that form a multiprotein complex.
View Article and Find Full Text PDFIdentification of single-gene causes of steroid-resistant nephrotic syndrome (SRNS) has furthered the understanding of the pathogenesis of this disease. Here, using a combination of homozygosity mapping and whole human exome resequencing, we identified mutations in the aarF domain containing kinase 4 (ADCK4) gene in 15 individuals with SRNS from 8 unrelated families. ADCK4 was highly similar to ADCK3, which has been shown to participate in coenzyme Q10 (CoQ10) biosynthesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!