Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Repetitive elements in DNA sequences are a hallmark of Apicomplexan protozoa. A genome-wide screening for Tandem Repeats was conducted in Toxoplasma gondii and related Coccidian parasites with a novel strategy to assess compositional bias. A conserved pattern of GC skew and purine-pyrimidine bias was observed. Compositional bias was also present at the protein level. Glutamic acid was the most abundant amino acid in the purine (GA) rich cluster, while Serine prevailed in pyrimidine (CT) rich cluster. Purine rich repeats, and consequently glutamic acid abundance, correlated with high scores for intrinsically disordered protein regions/domains. Finally, variability was established for repetitive regions within a well-known rhoptry antigen (ROP1) and an uncharacterized hypothetical protein with similar features. The approach we present could be useful to identify potential antigens bearing repetitive elements.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.gene.2024.148774 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!