In this study, laboratory-scale cultivation of T. chuii and D. tertiolecta was conducted using Conway, F/2, and TMRL media to evaluate their biochemical composition and economic costs. The highest cell density (30.36 × 10 cells/mL) and dry weight (0.65 g/L) for T. chuii were achieved with Conway medium. This medium also produced biomass with maximum lipid content (25.65%), proteins (27.84%), and total carbohydrates (8.45%) compared with F/2 and TMRL media. D. tertiolecta reached a maximum cell density of 17.50 × 10 cells/mL in F/2 medium, which was notably lower than that of T. chuii. Furthermore, the media cost varied from US$0.23 to US$0.74 for each 1 L of media, primarily due to the addition of NaPO, KNO, and cyanocobalamin. Thus, biomass production rates varied between US$38.81 and US$128.80 per kg on a dry weight basis. These findings comprehensively compare laboratory conditions and the costs associated with biomass production in different media. Additionally, this study explored the potential of T. chuii and D. tertiolecta strains, as well as their consortia with bacteria, for the degradation of various emerging pollutants (EPs), including caffeine, salicylic acid, DEET, imidacloprid, MBT, cimetidine, venlafaxine, methylparaben, thiabendazole, and paracetamol. Both microalgal strains demonstrated effective degradation of EPs, with enhanced degradation observed in microalgae-bacterial consortia. These results suggest that the symbiotic relationship between microalgae and bacteria can be harnessed for the bioremediation of EPs, thereby offering valuable insights into the environmental applications of microalgal cultivation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2024.142868 | DOI Listing |
Environ Sci Technol
January 2025
State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
Despite advancements in high-resolution screening techniques, the identification of novel perfluoroalkyl and polyfluoroalkyl substances (PFAS) remains challenging without prior structural information. In view of this, we proposed and implemented a new data-driven algorithm to calculate spectral similarity among PFAS, facilitating the generation of molecular networks to screen for unknown compounds. Using this approach, 81 PFAS across 12 distinct classes were identified in soil samples collected near an industrial park in Shandong Province, China, including the first reported occurrence of 12 iodine-substituted PFAS.
View Article and Find Full Text PDFSustain Earth
December 2023
Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, The Netherlands.
Unlabelled: Integrated Assessment Models (IAMs) and System Dynamic Models (SDMs) are starting to incorporate representations of the impact of environmental changes on health and socio-economic development into their modelling frameworks. We use this brief review to provide an overview of how health and well-being are currently represented in IAMs and SDMs. A grey literature search on 12 selected model host websites and their corresponding Wiki pages was conducted.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China.
Cadmium (Cd) isotopes have recently emerged as novel tracers of Cd sources and geochemical processes. Widespread clay minerals play a key role in Cd migration due to their strong adsorption capacity, but the mechanism of Cd isotope fractionation during adsorption onto clay minerals is poorly understood. Here, we experimentally investigated the adsorption mechanisms of Cd on montmorillonite (2:1) and kaolinite (1:1) by using extended X-ray absorption fine structure (EXAFS) spectroscopy.
View Article and Find Full Text PDFJ Sep Sci
January 2025
Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri, Türkiye.
The most important aspect of sorbent-based approaches is the use of a sustainable, readily available, and cost-effective sorbent material for sample analysis. Biochar is an emerging and prominent sorbent material for various applications in sorbent-based techniques due to its availability, affordability, eco-friendly nature, porosity, pore structure, abundance of aliphatic and aromatic carbon structures, and abundant oxygen-containing functional groups. On the basis of the numerous benefits of biochar, this review discusses why biochar is the preferred sorbent in sorptive-based techniques.
View Article and Find Full Text PDFIntegr Environ Assess Manag
January 2025
Department of Civil and Environmental Engineering, Florida State University, Tallahassee, FL, United States.
The growing concern over environmental pollution has spurred extensive research into various contaminants impacting ecosystems and human health. Emerging contaminants (ECs), including pharmaceuticals, personal care products, endocrine-disrupting chemicals, nanomaterials, and microplastics, have garnered significant attention due to their persistence, bioaccumulation, and toxicity. This study presents a comprehensive bibliometric analysis of EC research, aiming to detail the research landscape, highlight significant contributions, and identify influential researchers and pivotal studies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!