Investigation of copper-induced intestinal damage and proteome alterations in Takifugu rubripes: Potential health risks and environmental toxicology detection.

Ecotoxicol Environ Saf

Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, 52 Heishijiao Street, Dalian 116023, PR China; College of Marine Technology and Environment, Dalian Ocean University, 52 Heishijiao Street, Dalian 116023, PR China. Electronic address:

Published: September 2024

Copper is one of the predominant water pollutants. Excessive exposure to copper can cause harm to animal health, affecting the central nervous system and causing blood abnormalities. Cuproptosis is a novel form of cell death that differs from previous programmed cell death methods. However, the impact of copper on the intestines remains unclear. Therefore, we investigated the effects of different concentrations of copper exposure on the intestinal proteome of Takifugu rubripes (T. rubripes). Relevant biomarkers were used to detect cuproptosis. We revealed the crosstalk relationship between cuproptosis and self-rescue at different concentrations, and discussed the feasibility of using potential cuproptosis indicators as anti-infection factors. We observed intestinal damage in the three copper exposure groups, especially in T. rubripes treated with 100 and 500 μg/L copper, with shedding and breakage of intestinal villus and fuzzy and loose structure of intestinal mucosa. The presence of copper stress not only causes cuproptosis but also oxidative damage caused by reactive oxygen species (ROS). The results of quantitative proteomics by TMT showed that compared to the 50 and 100 μg/L copper exposure groups, the expression of glutaminase, pyruvate kinase, and skin mucus lectin in the 500 μg/L group was significantly increased. The positive mediators COX5A and CTNNB1, as well as the negative mediators CD4 and FDXR, were found to be differentially expressed. Using the protein expression trends of cuproptosis indicator factors FDX1 and DLAT to indicate the concentration of copper ions in the environment. In addition, we found a new effect of promoting ferroptosis: providing additional copper ions can activate the phenomenon of ferroptosis. Our results expand our understanding of the potential health risks of copper in T. rubripes. At the same time, it is of great significance for the process of copper poisoning and the development of new environmental toxicology detection reagents.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2024.116718DOI Listing

Publication Analysis

Top Keywords

copper
12
copper exposure
12
intestinal damage
8
takifugu rubripes
8
potential health
8
health risks
8
environmental toxicology
8
toxicology detection
8
cell death
8
exposure groups
8

Similar Publications

Background: Amalgamation of metal-tolerant plant growth promoting rhizobacteria (PGPR) with biochar is a promising direction for the development of chemical-free biofertilizers that can mitigate environmental risks, enhance crop productivity and their biological value. The main objective of the work includes the evaluation of the influence of prepared bacterial biofertilizer (BF) on biometric growth parameters as well as physiological and biochemical characteristics of rapeseed ( L.) at copper action.

View Article and Find Full Text PDF

Sequential Pore Functionalization in MOFs for Enhanced Carbon Dioxide Capture.

JACS Au

December 2024

Materials Discovery Laboratory (MaD Lab), Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States.

The capture of carbon dioxide (CO) is crucial for reducing greenhouse emissions and achieving net-zero emission goals. Metal-organic frameworks (MOFs) present a promising solution for carbon capture due to their structural adaptability, tunability, porosity, and pore modification. In this research, we explored the use of a copper (Cu(II))-based MOF called .

View Article and Find Full Text PDF

The use of visible light to drive chemical transformations has a history spanning over a century. However, the development of photo-redox catalysts to efficiently harness light energy is a more recent advancement, evolving over the past two decades. While ruthenium and iridium-based photocatalysts dominate due to their photostability, long excited-state lifetimes, and high redox potentials, concerns about sustainability and cost have shifted attention to first-row transition metals.

View Article and Find Full Text PDF

Phase change materials (PCMs) have been widely recognized as a highly efficient medium for thermal energy storage. Many studies have identified the low thermal conductivity of PCMs. In the current investigation, the researchers have blended PCM with nanoparticles to enhance its thermal conductivity and electrical efficiency.

View Article and Find Full Text PDF

High-Frequency Parametric Study of Electroplated Conductive Filaments in 3D Printed Microwave Topologies.

3D Print Addit Manuf

December 2024

Escuela de Ingeniería Eléctrica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.

This article presents a high-frequency characterization from 1 up to 10 GHz of electroplated conductive filaments in 3D printed microwave topologies. This study implements different microstrip lines and antennas to compare their performance as-is and with the electroplating process. The results for the microstrip lines show a significant decrease in losses for the electroplated devices, even reaching loss levels of pure copper devices.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!